
AFRL-PR-WP-TR-1999-2028

THE INTEGRATED MULTI-OBJECTIVE
MULTI-DISCIPLINARY JET ENGINE
DESIGN OPTIMIZATION PROGRAM

NICHOLAS J. KUPROWICZ

AIR FORCE INSTITUTE OF TECHNOLOGY
2950 P STREET
WRIGHT-PATTERSON AFB, OH 45433-7765

JANUARY 1999

FINAL REPORT FOR MARCH 1997 - DECEMBER 1998

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PROPULSION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE OH 45433-7251

„»„urn—•=»' 20000106 045

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA
INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN
GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE US
GOVERNMENT THE FACT THAT THE GOVERNMENT FORMULATED OR
SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT
LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY
ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY
PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION
SERVICE (NITS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC,
INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

ERROL G. BLEVINS
Project Engineer
Engine Integration & Assessment Branch
Turbine Engine Division
Propulsion Directorate

RICHARD J,;
Chief
Engine Integration & Assessment Branch
Turbine Engine Division
Propulsion Directorate

Cj£Z6^i~ £ /(traft
WILLIAM E.KOOP
Chief of Technology
Turbine Engine Division
Propulsion Directorate

Do not return copies of this report unless contractual obligations or notice on a
specific document require its return.

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to avertge 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, end completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for redwing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188I. Washington, DC 20603.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

JANUARY 1999

3. REPORT TYPE AND DATES COVERED

FINAL REPORT FOR MAR 1997 - DEC 1998
4. TITLE AND SUBTITLE

THE INTEGRATED MULTI-OBJECTIVE MULTI-DISCIPLINARY JET ENGINE
DESIGN OPTIMIZATION PROGRAM

6. AUTHOR(S)

NICHOLAS J. KUPROWICZ

5. FUNDING NUMBERS

IN- HOUSE
PE 62203
PR 3066
TA 11
WU TC

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AIR FORCE INSTITUTE OF TECHNOLOGY
2950 P STREET
WRIGHT-PATTERSON AFB, OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

PROPULSION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AFB, OH 45433-7251
POC: ERROL G. BLEVINS. AFRL/PRTA. 937-255-5308

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-PR-WP-TR-1999-2028

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The integrated multi-objective multi-disciplinary jet engine design optimization program is an analysis tool to aid engineers in
the conceptual engine design process. The program allows performance evaluation of a specified engine or a specified
aircraft/engine combination at given operating conditions or over a given mission. In addition, the program allows the
selection of values for specified engine parameters that yield the best composite performance at one or more operating
conditions or over a given mission. Finally, the program utilizes multi-objective optimization techniques to simultaneously
address conflicting objectives such as maximizing performance and minimizing fuel use, size, and cost.

This report is primarily a software user's guide to provide instruction on using the Integrated Multi-Objective
Multi-Disciplinary Jet Engine Design Optimization Program. The genetic algorithm routines used in the program are based on
an existing public-domain package. The aircraft design program is based on a AIAA sponsored code. The engine performance
program is a proprietary DOD-limited code.

14. SUBJECT TERMS

Jet Engine Optimization, Micro-Genetic Algorithm, Genetic Algorithm, Non-Linear
Optimization, Estimation, Kriging

15. NUMBER OF PAGES

81
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

SAR
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Contents

Executive Summary 1

1 Software User's Guide 3
1.1 Overview 4

1.1.1 Hardware and Software Requirements 4
1.1.2 Main Functional Areas 4
1.1.3 Graphical User Interface 5

1.2 Data Elements 6
1.2.1 TERMAP Input File - Name and Path 6
1.2.2 Engine On Design Specification 7
1.2.3 Engine Maximum Limits 7
1.2.4 Engine Minimum Limits 7
1.2.5 Off Design Point Definition 9
1.2.6 Desired Outputs - On Design 9
1.2.7 Desired Outputs- Off Design 9
1.2.8 Aircraft Drag File - Name and Path 11
1.2.9 Aircraft Constants 11
1.2.10 Aircraft Takeoff Weight 12
1.2.11 Aircraft Sizing Parameters 12
1.2.12 Mission Profile 13
1.2.13 Mission Constants 15
1.2.14 Installation Loss Model 16
1.2.15 Design Variable Configuration 18
1.2.16 Design Objectives with Aircraft Mission 18
1.2.17 Design Objectives without Aircraft Mission 20
1.2.18 Genetic Algorithm Options 20
1.2.19 Kriging Options 22
1.2.20 Output - Genetic Algorithm End Population 22
1.2.21 Output - Genetic Algorithm Best Population 22
1.2.22 Output - Genetic Algorithm Trace Information 23
1.2.23 Output - Best Solution 23
1.2.24 Output - Cycle Analysis 23
1.2.25 Output - Mission Analysis 23

1.3 File Formats and Limitations 25
1.3.1 TERMAP Input File 25

m

1.3.2 Aircraft Drag File 25
1.3.3 Subsonic Nozzle Drag File 26
1.3.4 Transonic Nozzle Drag File 26
1.3.5 Supersonic Nozzle Drag File 26
1.3.6 Matlab Data Files 26

1.4 First Time Setup 27
1.5 Running the Program 28

1.5.1 Primary Menu 28
1.5.2 Main Functional Area Menus 29
1.5.3 Additional Functions Menu 30

1.6 Limitations 31
1.6.1 Genetic Algorithm Optimizer 31
1.6.2 Mission Evaluation 31
1.6.3 TERMAP 32
1.6.4 Graphical User Interface 33
1.6.5 Kriging 33

Software Design Document 34
2.1 Overview 35

2.1.1 Scope 35
2.1.2 Intended Reader 35
2.1.3 Pertinent Matlab Concepts 35
2.1.4 Pertinent TERMAP Concepts 36

2.2 Overall Structure and Decomposition 37
2.3 Data Module 37

2.3.1 User Supplied ASCII Text Data Files 37
2.3.2 I/O With Matlab Data Storage Format 38

2.4 Genetic Algorithm Module 38
2.4.1 Purpose and High Level Operation 38
2.4.2 Accessing 38
2.4.3 Global Data 39
2.4.4 Module Decomposition 40

2.5 Graphical User Interface Module 40
2.5.1 Purpose and High Level Operation 40
2.5.2 Accessing 40
2.5.3 Global Data 41
2.5.4 Module Decomposition . 41

2.6 Initialization Module 41
2.7 Installation Loss Module 41

2.7.1 Purpose and High-Level Operation 41
2.7.2 Accessing 41
2.7.3 Global Data 42
2.7.4 Module Decomposition 42

2.8 Functional Areas Module 43
2.8.1 Purpose and High Level Operation 43
2.8.2 Accessing 43

IV

V

2.8.3 Global Data 43
2.8.4 Module Decomposition 44

2.9 Kriging Module 44
2.10 Lower Level Module 44
2.11 Mission Analysis Module 44

2.11.1 Purpose and High Level Operation 44
2.11.2 Accessing 44
2.11.3 Global Data 46
2.11.4 Module Decomposition 46

2.12 TERMAP I/O Module 46
2.12.1 Purpose and High Level Operation 46
2.12.2 Accessing 46
2.12.3 Global Data 48
2.12.4 Module Decomposition 48

Unit Listing 50
3.1 Genetic Algorithm 51
3.2 Graphical User Interface 52
3.3 Initialization 54
3.4 Installation Loss 55
3.5 Functional Areas 55
3.6 Lower Level 56
3.7 Mission 56
3.8 TERMAP I/O 58
3.9 Kriging 59

Data Listing 60
4.1 Init Graphics 61
4.2 Init Sizing Types 64
4.3 Init Loss Types 64
4.4 Init Data Struct 64
4.5 Init Leg Types 67
4.6 Init Leg Mapping 68
4.7 Init Messages 69
4.8 Init PIC Str 69
4.9 Gen PIC Str Display 69
4.10 Init Errors 70
4.11 Init Miss Constants 71
4.12 Init Kriging Data 74

List of Figures

1.1 Screen Areas 6
1.2 Engine On Design Specification 7
1.3 Engine Maximum Limits 8
1.4 Engine Minimum Limits 8
1.5 Off Design Point Definition 9
1.6 Desired Outputs - On Design 10
1.7 Desired Outputs - Off Design 10
1.8 Aircraft Constants 11
1.9 Aircraft Takeoff Weight 12
1.10 Aircraft Sizing Parameters 12
1.11 Mission Profile 13
1.12 Mission Constants 15
1.13 Installation Loss Model 17
1.14 Design Variable Configuration 19
1.15 Design Objectives with Aircraft Mission 19
1.16 Design Objectives without Aircraft Mission 20
1.17 Genetic Algorithm Options 21
1.18 Primary Menu 28
1.19 Stand Alone Engine Cycle Analysis Menu 29
1.20 Additional Functions Menu 31

VI

List of Tables

1.1 Aircraft Constants 11
1.2 Leg Types 13
1.3 Leg Constants 14
1.4 Mission Constants 16
1.5 Non-Constant Loss Model Data 17
1.6 Mission Analysis Output 23

2.1 Matlab Data Types 35
2.2 Genetic Algorithm Input Fields 38
2.3 Genetic Algorithm Output Fields 39
2.4 Installation Loss Model Inputs 42
2.5 Installation Loss Model Outputs 42
2.6 Mission Analysis Input Data 45

3.1 Genetic Algorithm Units 51
3.2 Graphical User Interface Units 52
3.3 Initialization Unit Listing 54
3.4 Installation Loss Module Unit Listing 55
3.5 Functional Areas Unit Listing 55
3.6 Lower Level Unit Listing 56
3.7 Mission Unit Listing 57
3.8 TERMAP I/O Unit Listing 59

4.1 Global Data Created by Init Graphics 61
4.2 Global Data Created by Init Sizing Types 64
4.3 Global Data Created by Init Sizing Types 64
4.4 Global Data Created by Init Data Struct 64
4.5 Global Data Created by Init Leg Types 67
4.6 Global Data Created by Init Leg Mapping 68
4.7 Global Data Created by Init Errors 70
4.8 Global Data Created by Init Miss Constants 71
4.9 Global Data Created by Init Leg Mapping 74

vn

Executive Summary

The Integrated Multi-Objective Multi-Disciplinary Jet Engine Design Optimization Program
is an analysis tool to aid engineers in the conceptual jet engine design process. Specifically, it
allows

• Performance evaluation of a specified engine at given operating conditions

• Performance evaluation of a specified aircraft /engine combination over a given mission

• Selection of values for specified engine parameters that yield the best composite perfor-
mance at one or more operating conditions

• Selection of values for specified engine parameters that, when integrated with the aircraft,
yield the best composite performance over a given mission

• Optional inclusion of non-constant installation losses during evaluation

• Optional ability to size aircraft while optimizing over a mission

• Ability to tailor optimization by modifying all pertinent optimization control parameters

• Ability to reduce total run time by including adaptive function estimation (kriging)

Engine cycle analysis is performed using TERMAP x , a sophisticated analysis code devel-
oped by Allison ADC under the direction of the USAF Foreign Technology Division.

Acronyms

The acronyms used throughout this document are given below.

A/B Afterburner

A/C Aircraft

GA Genetic Algorithm

GAOT Genetic Algorithms for Optimization Toolbox

GUI Graphical User Interface

I/O Input/Output

OS Operating System

RAM Random Access Memory

ROM Read Only Memory

SDD Software Design Document

'The Turbine Engine Reverse Modeling Aid Program (TERMAP) is a proprietary, DoD-Limited computer
program. Only that information which has been approved for public release is included in this document.

SUG Software User's Guide

S/W Software

TERMAP Turbine Engine Reverse Modeling Aid Program

References

1. Nadon, Luc J. J. P., Multidisciplinary and Multiobjective Optimization in Conceptual
Design for Mixed-Stream Turbofan Engines, MS Thesis, AFIT/GAE/ENY/96D-6, Air
Force Institute of Technology, Wright-Patterson AFB, OH, 1996

2. Millhouse, Paul T., Improving Algorithmic Efficiency of Aircraft Engine Design for Op-
timal Performance, MS Thesis, AFIT/GOR/ENY/98M-02, Air Force Institute of Tech-
nology, Wright Patterson AFB, OH, 1998

3. Mattingly, Jack D., Heiser, William H., Daley, Daniel H., Aircraft Engine Design, AIAA
Education Series, AIAA, New York, 1987

4. Hill, Philip G., Peterson, Carl R., Mechanics and Thermodynamics of Propulsion, 2nd
Edition, Addison-Wesley Publishing Co., Massachusetts, 1992

5. The MathWorks, Inc., Using MATLAB: Version 5, The MathWorks, Inc., 1996

6. The MathWorks, Inc., Using MATLAB Graphics: Version 5, The MathWorks, Inc., 1996

7. Allison Advanced Development Company, TERMAP Program User's Manual, Vol. 1 2

8. Houck, Christopher R., Joines, Jeffery A., Kay, Michael G., A Genetic Algorithm for
Function Optimization: A Matlab Implementation, contained with the Matlab GAOT
toolbox

This reference is not public.

Chapter 1

Software User's Guide

1.1 Overview

The purpose of this Software User's Guide (SUG) is to provide instruction on using the Inte-
grated Multi-Objective Multi-Disciplinary Jet Engine Design Optimization Program. Details
concerning software design are covered in the SDD.

1.1.1 Hardware and Software Requirements

Both UNIX and PC Windows (Windows 95/98/NT) operating systems are supported by the
program.

UNIX

On machines with the UNIX OS, it is required that Matlab version 5.1 or higher be installed.
The machine must have a minimum 128 Mb RAM, and a minimum 266 MHz processor. It is
highly recommended that a 17-inch or larger monitor be used.

It is also required that the user furnish a UNIX executable version of TERMAP which has
had the interfacing modifications outlined in the SDD. A UNIX executable version of TERMAP
which has had these modifications, along with complete FORTRAN-77 source code, is contained
on a DoD-Limited CD-ROM separate from this document.

Should the user desire the capability to directly access a text editor from within the program,
it is also required that an executable version of a text editor reside on the UNIX machine.

PC Windows

On machines with a PC Windows (Windows 95/98/NT) OS, it is required that Matlab version
5.2.1 or higher be installed. The machine must have a minimum 128 Mb RAM, and a minimum
400 MHz processor. It is highly recommended that a 17-inch or larger monitor be used.

It is also required that the user furnish a DOS executable version of TERMAP which has
had the interfacing modifications outlined in the SDD. The interface changes required for a
DOS version of TERMAP are identical to that required for a UNIX version.

Should the user desire the capability to directly access a text editor from within the program,
it is also required that an executable version of a text editor reside on the PC Windows machine.

1.1.2 Main Functional Areas

The program has been designed around a core set of tasks referred to as the main functional
areas. Each of these areas, along with a brief description of their purpose, is discussed in the
following sections.

Stand Alone Engine Cycle Analysis

The purpose of this functional area is to evaluate engine performance at specific operating
conditions. The basic inputs to this function are an on design engine specification, an off design
point, and the variables of interest for analysis. Output data consists of on design and off design
performance values for the desired variables.

Stand Alone Mission Analysis

The purpose of this functional area is to evaluate combined aircraft/engine performance for
a selected mission. The basic inputs to this function are an on-design engine specification,
aircraft characteristics, and a mission profile. Output data consists of a leg by leg performance
evaluation.

Engine Optimization with Mission - Fixed A/C

The purpose of this functional area is to determine the engine cycle configuration which opti-
mizes a mission dependent cost functional. The basic inputs to this function are an on-design
engine cycle specification (fixed parameters as well as design variables and ranges), aircraft char-
acteristics, a mission profile, design objectives, and optimizer options. Output data consists
of the optimizer's best solution along with lower level information describing the optimizer's
performance.

Engine Optimization with Mission - Scaleable A/C

The purpose of this functional area is to determine the engine cycle and aircraft size config-
uration which optimizes a mission dependent cost functional. The basic inputs and outputs
of this function are the same as the previous section, except that aircraft sizing parameters
are used instead of a fixed takeoff weight value. The use of these sizing parameters results in
an additional design variable for optimization runs, and is the reason for treating fixed and
scaleable aircraft cases separately.

Engine Optimization without Mission

The purpose of this functional area is to determine the engine cycle configuration which op-
timizes a cost functional relating a number of operating conditions. The basic inputs to this
function are an on-design engine cycle specification (fixed parameters as well as design variables
and ranges), a number of off design points, a design objective for each off design point, and
optimizer options. Output data consists of the optimizer's best solution along with lower level
information describing the optimizer's performance.

1.1.3 Graphical User Interface

The entire program acts as a manipulator of large, structured sets of data referred to as data
elements, and a graphical user interface (GUI) has been built into the program which takes
advantage of this concept. Each data element is treated as an object, independent of any
specific function to be performed. This approach permits data elements to be shared between
functional areas, and simplifies the process by which information is stored to and loaded from
a disk file.

Each functional area has its own GUI menu in which the user can define the contents of
input data elements, execute the core function, and view the contents of output data elements.
The layout of each menu is identical, with 4 separate areas on the screen to display and receive
user information. The relative positions and sizes of each area are shown in Figure 1.1.

Message Area Error, warning, and other messages to the user are placed in this area.

MESSAGE STATUS
AREA AREA

OPTIONS DATA
AREA AREA

Figure 1.1: Screen Areas

Options Area The options available to the user at any given time are placed in this area.

Status Area Information concerning the status of applicable data elements for the displayed
menu is placed in this area.

Data Area The contents of data elements may be viewed and/or edited in this area.

The menus for each of the functional areas are accessible from a base menu which is initially
displayed on the screen. There is also an additional menu for performing secondary functions
within the program. Before covering further details and procedures, a review of all data elements
within the program is provided.

1.2 Data Elements

This section describes all data elements used in the program and, where applicable, provides a
corresponding image from the data area.

1.2.1 TERMAP Input File - Name and Path

This data element contains the name and path of a baseline TERMAP input file. It is viewed
or edited via a standard file selection dialog whose appearance is dependent on the computer
system being used. An overview on the use and limitations of a baseline TERMAP input file
with the program is given in Section 1.3.1.

1.2.2 Engine On Design Specification

This data element contains a set of PIC /Data pairs which correspond to fixed on design engine
parameters. By program design, no more that 25 pairs may be specified. The format of this
data element is shown in Figure 1.2.

mm. wssm W*%; wmm-.

-

R

Hi
!

n

pi
ü

Figure 1.2: Engine On Design Specification

Unused entries must have a PIC value set to -1. Used entries must have an integer PIC
value in the range from 1 to 2288.

1.2.3 Engine Maximum Limits

This data element contains a set of PIC/Data pairs which correspond to maximum engine
limits. By TERMAP design, no more than 10 maximum limits may be specified. The format
of this data element is shown in Figure 1.3.

Unused entries must have a PIC value set to -1. Used entries must have an integer PIC
value in the range from 1 to 2288.

1.2.4 Engine Minimum Limits

This data element contains a set of PIC/Data pairs which correspond to minimum engine limits.
By TERMAP design, no more than 5 minimum limits may be specified. The format of this
data element is shown in Figure 1.4.

Unused entries must have a PIC value set to -1. Used entries must have an integer PIC
value in the range from 1 to 2288.

EES§ MÄXWUMUiwr

Figure 1.3: Engine Maximum Limits

«C ' MIWMtIM UMFT

Figure 1.4: Engine Minimum Limits

1.2.5 Off Design Point Definition

This data element contains a set of PIC/Data pairs which correspond to an off design point.
By program design, no more than 25 pairs may be specified. The format of this data element
is shown in Figure 1.5.

m~ MiOE wm

Fl

Fl

M

■
r
i

FT

ii

r

Figure 1.5: Off Design Point Definition

Unused entries must have a PIC value set to -1. Used entries must have an integer PIC
value in the range x from 1 to 2288.

1.2.6 Desired Outputs - On Design

This data element contains a set of PICs whose data values will be extracted from TERMAP
during on design evaluation. By program design, no more that 20 PICs may be specified. The
format of this data element is shown in Figure 1.6.

Unused entries must have a PIC value set to -1. Used entries must have an integer PIC
value in the range from 1 to 2288.

1.2.7 Desired Outputs - Off Design

This data element contains a set of PICs whose data values will be extracted from TERMAP
during off design evaluation. By program design, no more than 20 PICs may be specified. The
format of this data element is shown in Figure 1.7.

'The modified version of TERMAP recognizes a PIC of 3000 for the MODE parameter. The user should only
use this in the off design point definition for functional areas not involving an aircraft mission.

pre wc

Fi u

p"|

-t

Figure 1.6: Desired Outputs - On Design

*fs^ wc

i":

[-I

P

Figure 1.7: Desired Outputs - Off Design

10

Unused entries must have a PIC value set to -1. Used entries must have an integer PIC
value in the range from 1 to 2288.

1.2.8 Aircraft Drag File - Name and Path

This data element contains the name and path of a drag file for an aircraft. It is viewed or
edited via a standard file selection dialog whose appearance is dependent on the computer
system being used. An overview on the use and limitations of an aircraft drag file with the
program is given in Section 1.3.2.

1.2.9 Aircraft Constants

This data element contains various aircraft related constants. The format of this data element
is shown in Figure 1.8.

jrawo 3F tz&ms OM
•

«□IS laKHHB ta>.f t'S>
•

cameH, »a MOBS: r ' («i/a) *
laziäfr VROCOTHtn« ■■■■■• W»>'

P
•BStWTt HHnntSEB. DEiSS tti/t) fi

Figure 1.8: Aircraft Constants

A description of each of these constants, along with their corresponding units, is given in
Table 1.1.

Table 1.1: Aircraft Constants

Name Units Description
Number of Engines n/a This parameter defines the number of engines in-

stalled in an aircraft.
Maximum Lift Coefficient n/a This parameter defines the maximum allowable

value for the coefficient of lift. During mission eval-
uation, the calculated value for the lift coefficient is
compared to this maximum value. A violation for
any mission leg is flagged in the mission output.

Wing Loading psf This parameter defines the value of aircraft wing
loading. It is used in conjunction with takeoff weight
to determine wing surface area.

Critical Mach Number n/a This paramter defines the mach number correspond-
ing to a best cruise flight condition. It is used for
all mission legs of the best cruise mach type.

11

Aircraft Constants - continued

Name Units Description
Takeoff Velocity Ratio n/a This parameter defines a ratio of required takeoff

velocity divided by stall velocity. It is only used for
mission legs of the takeoff type.

Takeoff Friction Coefficient n/a This parameter defines a coefficient which represents
the effect of wheel friction during a takeoff leg eval-
uation. It is used in the calculation of a total drag
coefficient during takeoff.

Takeoff Additional Drags n/a This parameter defines a coefficient which represents
the effect of landing gear and other sources of drag
not accounted for in the A/C drag file during a take-
off leg evaluation. It is used in the calculation of a
total drag coefficient during takeoff.

1.2.10 Aircraft Takeoff Weight

This data element contains the gross takeoff weight, in pounds, of a fixed aircraft. The format
of this data element is shown in Figure 1.9.

Figure 1.9: Aircraft Takeoff Weight

1.2.11 Aircraft Sizing Parameters

This data element contains the parameters necessary for determining the gross takeoff weight
of an aircraft as a function of fuel weight. The format of this data element, for a linear sizing
scheme, is shown in Figure 1.10.

SSMCTYPE

met»

txanaems

sosnenHT «.- ta/a}" (Blip —

cozmtHxr « ■b

sans» &>)

JßXDWH (li)

Figure 1.10: Aircraft Sizing Parameters

Sizing Type

The selected type defines the sizing scheme which will be used for gross takeoff weight calcula-
tions. Both linear and nonlinear types are supported.

12

Fuel Weight Range

These parameters define a range of fuel weight values which may be used for gross takeoff weight
calculations.

Coefficients

These parameters are used in conjunction with a fuel weight value to determine a gross takeoff
weight. For a linear scheme, two coefficients are used and gross takeoff weight is calculated as
WTO = CQ + C{Wf, where Wf denotes fuel weight. For a nonlinear scheme, 10 coefficients are
used and gross takeoff weight is calculated as WTO = CQ + C{Wf + C2W/2 + ... + C9W/9

1.2.12 Mission Profile

This data element contains an aircraft mission, organized by flight leg. The format of this data
element, for a specific example, is shown in Figure 1.11.

tmmmm IKTVPE

iS^^^^S^^SSÄ^%SS®S^S^SSS^fe^Si^S^^

ISTTHSL- 2&3213ÜS *fQ

IIIÄ!
1 <«.

I^P

I^Mp^^^^M

Figure 1.11: Mission Profile

Leg Number

The selected value defines a mission leg number. Up to and including 30 mission legs are
supported.

Leg Type

The selected type defines, for each leg number, which mission leg calculations will be used
during mission evaluation. The names of each leg type, which themselves should provide an
adequate description of their function, are given in Table 1.2.

Table 1.2: Leg Types

Type
Unused
Constant Speed Climb - Minimum Climb Angle
Constant Speed Climb - Maximum Distance

13

Leg Types - continued

Name
Constant Speed Climb - Minimum Climb Rate
Constant Speed Climb - Maximum Time
Horizontal Acceleration - Maximum Distance
Horizontal Acceleration - Maximum Time
Climb and Acceleration - Minimum Climb Angle
Climb and Acceleration - Maximum Distance
Climb and Acceleration - Minimum Climb Rate
Climb and Acceleration - Maximum Time
Takeoff
Constant Altitude/Speed Cruise - Distance
Constant Altitude/Speed Cruise - Time
Constant Altitude/Speed Turn
Best Cruise Mach/Altitude - Distance
Best Cruise Mach/Altitude - Time
Loiter - Distance
Loiter - Time
Warmup
Constant Energy Height Maneuver
Deliver Expendables

Constants

Upon user selection of a leg type, the required constants corresponding to that type are auto-
matically displayed. A description of each of these constants, along with their corresponding
units, is given in Table 1.3.

Table 1.3: Leg Constants

Name Units Description
Altitude ft self explanatory
Initial Altitude ft self explanatory
Final Altitude ft self explanatory
Mach Number n/a self explanatory
Initial Mach Number n/a self explanatory
Final Mach Number n/a self explanatory
Distance nm self explanatory
Maximum Distance nm self explanatory
Minimum Climb Angle deg self explanatory
Minimum Climb Rate ft/sec self explanatory
Time sec self explanatory
Maximum Time sec self explanatory
Rotation Time sec self explanatory

14

Leg Constants - continued

Name Units Description
Afterburner Setting n/a This parameter is used for mission legs in which throt-

tling to a thrust is not required. A value of 1 corre-
sponds to max power, while a value of 0 corresponds
to mil power. Any value between 0 and 1 may be
used.

Afterburner Option n/a This parameter is used for mission legs in which throt-
tling to a thrust is required. A value of 1 permits the
afterburner to be used (if necessary), while a value of
0 does not permit the afterburner to be used. Only
values of 0 and 1 may be used.

Number of Turns n/a self explanatory
Load Factor g self explanatory
Vertical Fraction n/a A value of 0 corresponds to horizontal flight, while a

value of 1 corresponds to vertical flight. Any value
between 0 and 1 may be used.

Expendable Weight lb This parameter corresponds to the weight of an ob-
ject, such as a weapon, which is released from the
aircraft.

1.2.13 Mission Constants

This data element contains various mission related constants. The format of this data element
is shown in Figure 1.12. A description of each of these constants, along with their corresponding

nam

sons, SöüBF TBxenm

usix&w 8PTTCB "

Is
r
r.. iiiippiiiiiiiii

r

Figure 1.12: Mission Constants

units, is given in Table 1.4.

15

Table 1.4: Mission Constants

Name Units Description
Thrust Percentage Increase % This parameter defines, as a percentage of

installed thrust, the amount to increase in-
stalled thrust prior to using it for mission
leg calculations. This is necessary in order
to avoid potential errors which are not war-
ranted. For example, suppose 6,000 pounds
of installed thrust are required for a thrust-
throttling leg. Without this percentage in-
crease, even an installed thrust value of 5999.9
would be interpreted as a failure.

Initial Weight Fraction n/a This parameter defines, as a fraction of air-
craft gross takeoff weight, the aircraft weight
at the beginning of a mission. Any value be-
tween 0 and 1 may be used.

Leg Failure Option n/a This parameter affects the manner in which
mission evaluation is performed. It is used
whenever a given leg fails for any reason, such
as insufficient thrust. A value of 1 allows a leg
failure, after which mission evaluation contin-
ues as if the failed leg was not contained in
the profile. The mission output is flagged to
indicate this occurrance, and all other output
data corresponding to the failed leg should be
considered void. A value of 2 does not allow
a leg failure, and if a given leg fails then mis-
sion evaluation will terminate. Only values of
1 and 2 may be used.

A/B Throttle Percentage Tolerance % This parameter defines, as a percentage of
uninstalled thrust, the difference between re-
quired uninstalled thrust and the amount
of uninstalled thrust provided by TERMAP
which suffices for convergence during after-
burner throttle iteration.

A/B Throttle Maximum Iterations n/a This parameter defines the maximum number
of iterations which are permitted during af-
terburner throttling.

1.2.14 Installation Loss Model

This data element contains the variables necessary for determining the effect of installation
losses during mission evaluation. The format of this data element is shown in Figure 1.13.

16

Mum trocr tMISTAHl-tuVMOKl

■OOHSBWr «ossrwr toss pfsmtaiss «)

KW^ÄWAOTLWSMeWi

isHT '<nBIH5 »CE5 JSZi (ft-21

BUT BLEED ffitCH tKBKB On/a)

narr ticSs soar wssa 'Baa»' ;(n/»}

JKSJLE Kffi cmiBS SECJBE& (ft"2j

iiBsaE IXB TO Baana EKTIO :(«/»)

baa* race *«a PK («/»:
HCESLX LOSS CtEFT OFFER S0CXD ?n/»)

;(BWfsnj)

aosar EBBS rar -' afflsomc

wssuoao pax -sauisoias -

BOKLE'CSMFEX - SDPXÄSSKHT ^

tOKTSEO}

r
1*
r

ft)

ST" "r-"
1
p t Ä^
" -^ä^SI

»*«■■ fj

? "v^' ~-f
S*et j

Figure 1.13: Installation Loss Model

Model Usage

The selected type defines the installation loss model which will be used. Both a constant and
a non-constant loss model are supported.

Constant Loss Model

For a constant loss model, a scalar loss percentage is the only data required.

Non-Constant Loss Model

For a non-constant loss model, a variety of scalar quantities and files are required from the user.
A description of each of these is given in Table 1.5.

Table 1.5: Non-Constant Loss Model Data

Name Units Description
Inlet (Engine Face) Area sqft This parameter defines the size of the physical

engine inlet.
Inlet Bleed Mach Number n/a This parameter defines the mach number at

which bypass and bleed flows leave the inlet
for supersonic cases.

17

Non-Constant Loss Model Data - continued

Name Units Description

Inlet Loss Coeff Upper Bound n/a This parameter defines a realistic upper
bound for the inlet loss coefficient, where the
coefficient is interpreted as inlet drag force di-
vided by uninstalled thrust.

Nozzle Max Cross Sec Area sq ft This parameter defines the size of the largest
cross sectional area portion of the nozzle.

Nozzle Len to Diameter Ratio n/a This parameter defines the length to diameter
ratio of the nozzle, where the diameter at the
largest cross sectional area is used.

Nozzle Exit Area PIC n/a This parameter defines the (cycle-dependent)
TERMAP PIC which provides the size of the
nozzle exit. It is assumed that TERMAP gives
nozzle exit area in square inches for all cycles.

Nozzle Loss Coeff Upper Bound n/a This parameter defines a realistic upper
bound for the nozzle loss coefficient, where the
coefficient is interpreted as nozzle drag force
divided by uninstalled thrust.

Nozzle Drag File - Subsonic n/a An overview on the use and limitations of
a subsonic nozzle drag file is given in Sec-
tion 1.3.3.

Nozzle Drag File - Transonic n/a An overview on the use and limitations of
a transonic nozzle drag file is given in Sec-
tion 1.3.4.

Nozzle Drag File - Supersonic n/a An overview on the use and limitations of
a supersonic nozzle drag file is given in Sec-
tion 1.3.5.

1.2.15 Design Variable Configuration

This data element contains a set of PICs, with ranges for each, which will be used as design
variables for an optimization routine. The format of this data element is shown in Figure 1.14.

Unused entries must have a PIC value set to -1. Used entries must have an integer PIC
value in the range from 1 to 2288.

1.2.16 Design Objectives with Aircraft Mission

This data element contains an objective configuration for optimization cases involving an air-
craft mission. The format of this data element is shown in Figure 1.15.

At present, the amount of fuel consumed during the aircraft mission is the only objective
supported. The constants in this data element serve the purpose of scaling the fuel consumption
objective and, as a mono objective case, the scaling will not significantly impact optimizer
performance. A value of 1 should be used for the objective factor.

18

WC KsmppüW mmmmmm

-i

i-i

Figure 1.14: Design Variable Configuration

pm tmimt - wztzm nem <»M

SDB COSStWOj'- flPTDtrSIIC ZSTCTSU Übt '

rrax COüSTOED
1
 - ssssnosrr« KBD&TE;

7
 ' Oh»

Figure 1.15: Design Objectives with Aircraft Mission

19

1.2.17 Design Objectives without Aircraft Mission

This data element contains an objective configuration for optimization cases not involving an
aircraft mission. The format of this data element is shown in Figure 1.16.

wmaxm*^$w m tam&mmmm m pK&om&0&ß%&. -& «raccrim^
mM$8$$S tactok WtfttftfX i^ Sil&iiM^ift

tbnmrr nriHiir

U..*' Mm&
StkOBt §!§ I-' üi MMilii III!: f**^ * '

llfil Smrtfik ! 1- lIS (-1 1 1^ ' ' ^

r
fcfcd B» { ?^

i-i1
lllililii-

-i
'£%$< fiijll§^ila::&§

-i

(Seat* Re { f*A t-: <äp il§pllif§ ■ 1 ■ r
i

> S«W B« | :^$jjS|i: ■■I 1 r N

Seen f» i MB Si ipii ■ ■■■ r \
S*a»e ! i-i iÄ ! ■ IMBI ||||;

Figure 1.16: Design Objectives without Aircraft Mission

Off Design Points

It is required that each off design point specified by this data element be contained in a Matlab
data file. Upon selection of the Select File button, a standard file selection dialog will be
provided in which the user can select an individual file containing the off design point.

Objective Scaling

The value of each individual objective is scaled to ensure that each objective will be of the
same order of magnitude. The optimistic and pessimistic estimates serve this purpose, and the
program uses these to scale each objective in the range from 0 to 1. The objective factors are
a measure of importance for each individual objective, and each should be a positive number.
By implementing objective factors such that the sum of all used objective factors equals 1, then
the overall multi-objective value for a given design will be in the approximate range from 0 to
1.

1.2.18 Genetic Algorithm Options

This data element contains all definable parameters for the genetic algorithm optimizer. The
format of this data element is shown in Figure 1.17. A description of each of these constants is

20

fOOTXEMX'SIZr ' <n/*J

vsxnm HWS5ER er CESEHMIOXS (n/Bj

FHXE5S TC12R&W2 {n/a}

JBüÄEiie cEÖKCvnfö FOV'snERsrnw. "••'«)

Hswjsrre OUJSSBTOK PER BERKSCTSS -: ■ ■ W

SIJIPIE CMSSWEBSHS DENEREEUHT ' t*3

BonKMffiriRri&rä«ss''piES BEIäE4TIOK J
'.'• W

sum w» srarraor «OTTOWS irä'BEBniKrira '"'(*)

BO» tan?««» »naixoss Pw-aaBwasBT' (*»
UJHF ORB wnMso W

HosBiB or SURISCTCCROSSOVER BEDEUS
:"{w»y

IBCn.BBK UBIFIfflt «OtäfflÖH SAW TKXBB Wa>

sre'TOiraiBKMrainw SE8PE:rseiÖR la/»)

5EUECHW JWBaBDiTXr ESCXOR Xn/aj

i
IP ü

r

r n

Figure 1.17: Genetic Algorithm Options

provided throughout the remainder of this section.

Population Size (n/a) This parameter defines the number of individual designs which will
be used to initiate the simulated evolution. Until additional testing is performed, a value
of 100 is recommended.

Maximum Number of Generations (n/a) This parameter defines the maximum number
of times an offspring population will be created from a parent population. Until additional
testing is performed, a value of 10 is recommended.

Fitness Tolerance (n/a) This parameter defines, with respect to the objective function value,
the distance required for two designs to differ. This number should be small compared to
the objective value, and a value of 1E-6 is recommended.

Arithmetic Crossovers per Generation (%) This parameter defines, as a percentage of
population size, the number of times a crossover of the arithmetic type is applied per
evolution cycle. Until additional testing is performed, a value of 5 is recommended.

Heuristic Crossovers per Generation (%) This parameter defines, as a percentage of pop-
ulation size, the number of times a crossover of the heuristic type is applied per evolution
cycle. Until additional testing is performed, a value of 5 is recommended.

Simple Crossovers per Generation (%) This parameter defines, as a percentage of popu-
lation size, the number of times a crossover of the simple type is applied per evolution
cycle. Until additional testing is performed, a value of 5 is recommended.

Boundary Mutations per Generation (%) This parameter defines, as a percentage of pop-
ulation size, the number of times a mutation of the boundary type is applied per evolution
cycle. Until additional testing is performed, a value of 5 is recommended.

21

Multi-Non-Uniform Mutations per Generation (%) This parameter defines, as a per-
centage of population size, the number of times a mutation of the multi non uniform
type is applied per evolution cycle. Until additional testing is performed, a value of 5 is
recommended.

Non-Uniform Mutations per Generation (%) This parameter defines, as a percentage of
population size, the number of times a mutation of the non uniform type is applied per
evolution cycle. Until additional testing is performed, a value of 5 is recommended.

Uniform Mutations per Generation (%) This parameter defines, as a percentage of pop-
ulation size, the number of times a mutation of the uniform type is applied per evolution
cycle. Until additional testing is performed, a value of 5 is recommended.

Number of Heuristic Crossover Retries (n/a) This parameter defines the total number
of times attempts can be made to create a valid child design from two parent designs by
applying a crossover of the heuristic type. Until additional testing is performed, a value
of 3 is recommended.

Multi-Non-Uniform Mutation Shape Factor (n/a) This parameter affects the amount
of change a design variable can undergo during a mutation of the multi non uniform type.
A value greater than or equal to the maximum number of generations should always be
used.

Non-Uniform Mutation Shape Factor (n/a) This parameter affects the amount of change
a design variable can undergo during a mutation of the non uniform type. A value greater
than or equal to the maximum number of generations should always be used.

Selection Probability Factor (n/a) This parameter affects the manner in which designs
are carried over to a new population. Until additional testing is performed, a value of
0.08 is recommended.

1.2.19 Kriging Options

This data element defines whether or not kriging is to be used during optimization routines.
Its format is a simple pulldown menu which only contains only two options: Use Kriging or Do
Not Use Kriging.

1.2.20 Output - Genetic Algorithm End Population

This data element contains ASCII text, in matrix format, which represents the population of
designs existing at the end of the simulated evolution. Each row corresponds to an individual
design, with the values for each design variable and the overall objective value given. Column
headers are provided within the text for interpretation.

1.2.21 Output - Genetic Algorithm Best Population

This data element contains ASCII text, in matrix format, which represents the overall best
design in each generation during the simulated evolution. Each row corresponds to a generation,

22

with the generation number, values for each design variable, and the overall objective value
given. Column headers are provided within the text for interpretation.

1.2.22 Output - Genetic Algorithm Trace Information

This data element contains ASCII text, in matrix format, which represents the best and average
objective values for all designs within each generation. Each row corresponds to a generation,
with the generation number, best objective value, and average objective value given. Column
headers are provided within the text for interpretation.

1.2.23 Output - Best Solution

This data element contains ASCII text which represents the overall best design found during
the simulated evolution. The values for each design variable and the overall objective value are
given. Identifiers are provided within the text for interpretation.

1.2.24 Output - Cycle Analysis

This data element contains ASCII text, divided into an on-design section and an off-design
section, which provides cycle performance data. The cycle data is organized by parameter
index code, and identifiers within the text permit interpretation.

1.2.25 Output - Mission Analysis

This data element contains ASCII text, divided by flight leg, which provides mission perfor-
mance data. Each mission leg has data fields as given in Table 1.6. Fields beginning with =>
represent data values for a single engine.

Table 1.6: Mission Analysis Output

Name Units Description
Leg Number n/a self explanatory
Leg Type n/a self explanatory
Error Code n/a Discussion of this component is given in Sec-

tion 1.6.2.
Warning Code n/a Discussion of this component is given in Sec-

tion 1.6.2.
Initial Velocity ft/s self explanatory
Representative Velocity ft/s self explaatory
Final Velocity ft/s self explanatory
Initial Altitude ft self explanatory
Representative Altitude ft self explanatory
Final Altitude ft self explanatory
Initial Mach n/a self explanatory
Representative Mach n/a self explanatory
Final Mach n/a self explanatory

23

Mission Analysis Output - continued

Name Units Description
Dynamic Pressure psf self explanatory
Lift Coefficient n/a self explanatory
Drag Coefficient n/a self explanatory
Drag Force lb self explanatory
=> IFAIL n/a The TERMAP IFAIL parameter.
=> MODE n/a The TERMAP MODE parameter.
=>PLA n/a The TERMAP PLA parameter.
=> PCTRH(l) n/a The TERMAP PCTRH(l) parameter.
=>SFC 1/8 self explanatory
=> TSFC 1/8 self explanatory

=>SFC 1/hr self explanatory
=> TSFC 1/hr self explanatory
=> Uninstalled Thrust lb The uninstalled thrust provided by TERMAP.
=> Inlet Loss Coefficient n/a self explanatory
=> Nozzle Loss Coefficient n/a self explanatory
=> Installed Thrust lb self explanatory
=> Installed Thrust W/Tol lb The installed thrust with the percentage increase

defined by the user.
Total Installed Thrust lb The total amount of installed thrust value which

the A/C has available.' This will only be different
from the previous variable if there are multiple en-
gines.

Excess Thrust lb The difference between drag force and total in-
stalled thrust.

Climb Angle rad self explanatory
Climb Angle deg self explanatory
Vertical Distance ft self explanatory
Horizontal Distance ft self explanatory
Total Distance ft self explanatory
Vertical Distance nm self explanatory
Horizontal Distance nm self explanatory
Total Distance nm self explanatory
Vertical Velocity ft/s self explanatory
Horizontal Velocity ft/s self explanatory
Total Velocity ft/s self explanatory
Time sec self explanatory
Time min self explanatory
Time hr self explanatory
Initial Weight lb self explanatory
Final Weight lb self explanatory
Weight Difference lb self explanatory

24

Mission Analysis Output - continued

Name Units Description
Initial Weight Fraction n/a self explanatory
Final Weight Fraction n/a self explanatory

Any data whose value is -1 signifies that it was not calculated (velocities for warmup legs,
for example).

1.3 File Formats and Limitations

1.3.1 TERMAP Input File

A default TERMAP input file is required from the user. The format of this file is the same as
that normally used for TERMAP operation with the following exceptions:

1. There must not be any MAXLIM or ENGMAX definitions within the file.

2. There must not be any MINLIM or ENGMIN definitions within the file.

3. There must be one, and only one, off design point line defined in the file. Furthermore,
this line must be $D IDES=0, LAST=1, $D.

Further information about the use of a baseline TERMAP input file with the program may be
found in the SDD.

1.3.2 Aircraft Drag File

The following is taken verbatim from Aircraft Engine Design by Mattingly, et al.

The conventional form of the lift-drag polar equation is

CD = Cumin + K'CL + K"(CL — CjCmin)

where K' is the inviscid drag due to lift (induced drag) and K" is the viscous drag
due to lift (skin friction and pressure drag). Expanding and collecting like terms
shows that the lift-drag polar equation may also be written

CD = (K' + K")C2
L - (2K"CLmm)CL + (CWi„ + K"C2

LmJ

or

CD = KXC\ + K2CL + CDO (1.1)

where

K1=K' + K"

25

K2 = -2K"CLrnia

CDO — W5min + K Cimin

Note that the physical interpretation of CD0IS the drag coefficient at zero lift. Also,
for most high performance aircraft Cunm * 0, so that &2 ~ 0.

Equation 1.1 is the expression used to calculate drag coefficients within the program. The
values for K\, Ki, and CDO at any flight mach number are found by linear interpolation of
the drag table specified within the drag file. The drag file must only contain numbers in a
matrix format, no comments are permitted. Column 1 corresponds to mach number, column 2
corresponds to K\, column 3 corresponds to K2, and column 4 corresponds to CDO- Since the
values are linearly interpolated, rather than approximated from curve fitting, the resolution of
the drag profile has an impact. Also, extrapolation of the data is not supported, so data for a
zero mach number as well as a sufficiently high mach number should be provided.

1.3.3 Subsonic Nozzle Drag File

For the cases where the flight mach number is less than 0.8, and a non-constant installation
loss model is used, a subsonic nozzle drag file is required. This file must only contain numbers
in a matrix format, no comments are permitted. Column 1 corresponds to IMS, and column
2 corresponds to CD, where IMS and CD are defined in Aircraft Engine Design by Mattingly,
et al.

1.3.4 Transonic Nozzle Drag File

For the cases where flight mach number is between 0.8 and 1.2, and a non-constant installation
loss model is used, a transonic nozzle drag file is required. This file must only contain numbers
in a matrix format, no comments are permitted. Column 1 corresponds to MD, and column 2
corresponds to CDP, where M) and CDP are defined in Aircraft Engine Design by Mattingly,
et al.

1.3.5 Supersonic Nozzle Drag File

For the cases where flight mach number is greater than 1.2, and a non-constant installation loss
model is used, a supersonic nozzle drag file is required. This file must only contain numbers
in a matrix format, no comments are permitted. Column 1 corresponds to IMS, and column
2 corresponds to CD\M0=I.2, where IMS and CD\M0=I.2 are defined in Aircraft Engine Design
by Mattingly, et al.

1.3.6 Matlab Data Files

When saving and loading data elements to and from a disk file, the program uses Matlab's
(*.mat) format. This is a type of machine language, and is accessible only through Matlab.

26

1.4 First Time Setup

The DoD-Limited CD-ROM separate from this document contains the following:

• The directory Data contains example ASCII text data files.

• The directory Developer contains a variety of files which may be useful for further mod-
ification of the overall package.

• The directory Documentation contains all documentation, in LaTeX format, for the pro-
gram.

• The directory Fortran contains the original and modified versions of TERMAP, both
FORTRAN-77 code and executables, which were used during development on a UNIX
platform.

• The directory Functional_Areas contains Matlab source code.

• The directory GA contains Matlab source code.

• The directory GUI contains Matlab source code.

• The directory Initialization contains Matlab source code.

• The directory Inst_Loss contains Matlab source code.

• The directory Kriging contains Matlab source code.

• The directory Lower_Level contains Matlab source code.

• The directory Mission contains Matlab source code.

• The directory TERMAP_I0 contains Matlab source code.

• The file Script .m is a single unit of Matlab code.

With the exception of the Developer, Documentation, and Fortran directories, each of the
above mentioned items should be copied to the same parent directory on the user's machine.
At this point, there are two additional steps required. First, the user must place a TERMAP
executable (appropriately modified for use with the program) in the TERMAP.IO directory. Sec-
ond, the user must make changes to the file Script .m in order to permit Matlab to access all
source code and executable files comprising the program. Comments within Script .m provide
detailed instruction as to the specific changes required.

It should also be noted that all font information for the screen displays is controlled by the
file Init_Graphics.m within the GUI directory. Depending on the machine and monitor being
used, there may be changes required to this file as well. Comments within Init_Graphics.m
provide detailed instruction as to the specific changes required.

27

1.5 Running the Program

Getting the program up and running is a three stage process.

1. Initiate Matlab.

2. At the Matlab command line prompt, change the working directory to the one which
contains the file Script.m.

3. At the Matlab command line prompt, type Script and hit return.

1.5.1 Primary Menu

The primary menu is the first to be displayed on the screen, and serves as a base menu from
which all areas of the program may be accessed. It is shown in Figure 1.18.

Integrated Multi-Objective Murb'-tSscipinary
Jet Engine Design Optimization Program

JW»S Jtonc Eagdt CwJc Mil

äandvfeM MWOA fciojwi

Sign» QrtmwiOttWm (*s*0fs - ilMfl

Engne OftWrtöoö ftHft»$»wn * $&utik /

Saat» Cp*aaJ'flnWMh«rt MKK»

Prepared ton

Air Force Research Laboratory
Proprtston Directorate

Turtete Engine DMsion
: Engine integration and Assessment Branch

Prepared by;

Air force institute of Technology
Graduate School ol Engineering

Department or Aeronautics and Astronautics

AKftwa fi**Kr»

Figure 1.18: Primary Menu

The available options for this menu are:

• Stand Alone Engine Cycle Analysis This option transfers the user to the corresponding
menu for this functional area.

• Stand Alone Mission Analysis This option transfers the user to the corresponding menu
for this functional area.

• Engine Optimization With Mission - Fixed A/C This option transfers the user to the
corresponding menu for this functional area.

28

• Engine Optimization With Mission - Scaleable A/C This option transfers the user to the
corresponding menu for this functional area.

• Engine Optimization Without Mission This option transfers the user to the corresponding
menu for this functional area.

• Additional Functions This option transfers the user to the Additional Functions Menu.

• Exit Program This option, after user confirmation, terminates the program as well as
Matlab.

1.5.2 Main Functional Area Menus

These menus are all identical in operation, and for illustrative purposes the Stand Alone Engine
Cycle Analysis Menu will be used throughout this section. This menu is shown in Figure 1.19.

mem. • vxDtmt s.ncns ; .BSHEOTEB / ssrws j
i ESSüE - «KBC* vsxas IHWM:»'»:I> / mxzx

:<B7 EESJ6K FOOfl BErmHWB •SHSPECirHB J SETtf&Z
i TSSS03S, sargen • u sssis* J&st&safxz /äSRWT

■BE6X8Ö) ffiÄPBÄfi -iff? SKSI6H .&B&££a<ZEB f WtVXZ

Ifcdalifordta**.

Lad fitoteig Cafa: mm w^mMmm

Ww«!ftW»kd&3««ftn»rt ' j !

fif«tSefco»» ÖW» eawnl

3a*e Owen* Dat* j

Sxer^ftjenrt

iWamtolÄiifcnB j

Figure 1.19: Stand Alone Engine Cycle Analysis Menu

The available options for this menu are:

• Load Existing Data This option initiates the process by which the user may load data
from file into the current menu data structure. Additional information concerning this
option is covered later in this section.

• View/Edit Selected Data Element This option brings up the contents of the data element
which is highlighted in the status area. Section 1.2 provides details concerning data
elements.

29

• Reset Selected Data Element This option, after user confirmation, clears the data element
contents to its original state.

• Save Current Data This option initiates the process by which the user may save data
from the current data structure to file. Additional information concerning this option is
covered later in this section.

• Execute Program This option initiates the process by which the core function for the menu
is evaluated.

• Return to Main Menu This option returns the user to the Primary Menu.

Saving Data to File

Upon selecting the Save Current Data option, the user will have available the following options
(which should be completed in the order given):

• Select Data Elements This option brings up a list of data elements corresponding to the
displayed menu. The user then selects the desired data elements to save.

• Assign Filename This option brings up a standard file selection dialog for saving a data
file. The *.mat extension must always be used.

• Save To File This option physically transfers the data from the current menu data struc-
ture to file.

• Done - Cancel This option completes or cancels the process.

Loading Data from File

Upon selecting the Load Existing Data option, the user will have available the following options
(which should be completed in the order given):

• Select Data File This option brings up a standard file selection dialog for choosing a data
file. Only *.mat files may be used.

• Select Available Data Elements This option brings up a list of the data elements contained
in the file which are also applicable to the displayed menu. The user then selects the
desired data elements to load.

• Load Data This option physically transfers the data from file into the current menu data
structure.

• Done - Cancel This option completes or cancels the process.

1.5.3 Additional Functions Menu

This menu serves as an area to perform secondary functions within the program, and is shown
in Figure 1.20. At present, the only secondary function which may be performed from this
menu is invoking a text editor.

30

Integrated Multi-Objective Multi-Dteciplnary \
Jet Engine Design Optimization Program

Prepared tor: ,-

Air Force Research Laboratory
ProptislonDlmctoralB :.; :

Turbtoe Engtoe DMslon
: Engine imegnUio» and Assessment Ranch j

■ Prepared by:

Air Force Institute «I "technology
Graduate School of Engineenng

Department of Aeronautics and Astronautics

Figure 1.20: Additional Functions Menu

1.6 Limitations

This section describes current limitations of the program.

1.6.1 Genetic Algorithm Optimizer

It is possible for the end population to contain a design vector whose objective value is better
than that described as the best overall solution. This is a limitation within the original GAOT
package, and no correction has been implemented. The user should check the end population
for this possible occurance.

The recommended values for the GA parameters as described in Section 1.2.18 are provided
for initial testing purposes only. The performance of GA optimizer is case dependent, and
experience gained by using the program will permit the user to customize these parameters
according to specific classes of problems.

1.6.2 Mission Evaluation

It is possible, during a constant speed climb mission leg evaluation, for the total installed thrust
value obtained in a non-thrust throttling mode to exceed that which corresponds to a 90 degree
flight angle. This means that even if flight is vertical, the aircraft will still be accelerating. For
these cases, a thrust throttling mode is used where the installed thrust yields a 45 degree flight
angle.

The use of the Mattingly-based non-constant installation loss model requires some a priori

31

knowledge of the required engine sizing parameters corresponding to a given mission profile. A
poor selection of these sizing parameters could produce unrealistic values for the inlet and nozzle
loss coefficients, and in some cases it may not even be possible to calculate them. Rigorous
provisions have been introduced into the code which create and use an overall pass/fail status of
the non-constant loss model. If the coefficients are out of bounds (i.e. negative or greater than
the user defined upper Unfits), or if the coefficients can't be calculated, then this is interpreted
as a loss model failure. A loss model failure ultimately translates to a mission leg failure.

The error and warning code fields in the mission analysis output are displayed as numbers,
and correspond to the following:

0 No errors or warnings.

100 The constraint for the leg was not recognized. This was created for development purposes
and will never occur.

200 Data table linear interpolation failure.

300 Lift coefficient violation.

400 Insufficient thrust.

500 The constraint for the leg, such as distance or time, was not satisfied.

600 The afterburner option for the leg was not recognized. This was created for development
purposes and will never occur.

700 Takeoff distance constraint not satisfied.

800 Leg failure continuation.

900 Afterburner throttling failed.

1000 TERMAP physically crashed.

1100 TERMAP returned an infeasible point.

1200 Unexpected result.

1300 Unable to determine uninstalled engine settings which produce a required installed thrust.

1400 Installation loss model failure.

1.6.3 TERMAP

Under extremely rare circumstances, it is possible for TERMAP to produce a series of asterisks
(*) instead of a numerical quantity for one or more output variables. All TERMAP I/O is built
entirely around PIC codes and their corresponding data, and no error checking has been built in
to search for non-numerical data within the TERMAP output. A complete program failure will
result if this occurs. This type of behavior has only been observed during testing specifically
designed to exercise TERMAP, and has not occured at any other time during development.

32

1.6.4 Graphical User Interface

If the user enters a non-numerical entry in a data field requiring a numerical entry, and then
confirms his selection, a Matlab error will occur. Although the program will function properly
afterward, it is recommended that the user restart the program.

When executing one of the main functions within the program, it is possible for the message
area to become obscured (in some cases it may even be blank). This problem is due to Matlab's
internal queing process, and cannot be corrected. If the user has any doubt as to whether or not
the code has hung, he or she may check the Matlab command window for information which is
continuously displayed throughout processing.

1.6.5 Kriging

The required interface between all functional areas which perform optimization and the kriging
code is complete. For trivial cases with only one design variable, the use of kriging has been
successful. For more meaningful cases with two or more design variables, however, attempts
at using kriging have failed (the kriging code physically crashes). Although the interface spec-
ification described in Improving Algorithic Efficiency of Aircraft Engine Design for Optimal
Performance by Millhouse has been followed, the most likely cause of the problem is due to a
high-level interfacing issue. All of the lower level algorithms within the routine were previously
validated for cases involving many design variables, and were shown to significantly enhance the
overall engine optimization process. With some additional effort, this problem can be remedied.

33

Chapter 2

Software Design Document

34

2.1 Overview

This purpose of this Software Design Document (SDD) to describe the overall design of the
Integrated Multi-Objective Multi-Disciplinary Jet Engine Design Optimization Program. De-
tails have been included to describe the decomposition of the package into modules and the
high-level data structures comprising them.

2.1.1 Scope

There are three important aspects that, with respect to the overall scope of this SDD, need to
be addressed. First, there are no formal software requirements corresponding to development.
Regular meetings between the developer and the funding organization have served as a means
by which to agree on functionality and check progress. Second, an explicit description of
calculations performed within the program is not given. All calculations are consistent with
the referenced documents. Third, this SDD provides a high-level description of the overall
design. The developer has spent considerable effort on making the source code as readable and
self-documented as possible, and lower-level details may be found in the source code itself.

2.1.2 Intended Reader

This SDD is written for individuals who are familiar with the Matlab programming language
and the Turbine Engine Reverse Modeling Aid Program (TERMAP). Individuals not well versed
in these areas, however, should have have little difficulty in navigating through this document
and understanding the basic concepts.

2.1.3 Pertinent Matlab Concepts

With the exception of TERMAP, all of the program's source code is written in the Matlab
programming language. Table 2.1 gives a listing of Matlab data types referenced throughout
this SDD.

Table 2.1: Matlab Data Types

Reference Name Description
scalar This is a scalar quantity. Although Matlab supports

complex variables, none are used anywhere within the
program.

vector This is a vector of data. Vectors can be of either
row or column types. A vector with only one entry is
equivalent to a scalar.

matrix This is a matrix of data. A matrix with only one row
or one column is equivalent to a vector.

string This is a character string.

35

Matlab Data Types - continued

Reference Name Description
cell This is a cell array, one of Matlab's most powerful pro-

gramming features. It is similar to a matrix, except
that index entries can be any data type, including
other cell arrays. The cell Matlab command may be
used to create it.

struct This is a data structure, another powerful program-
ming feature. It is very similar to structures in the
C/C++ languages. The struct Matlab command
may be used to create it.

cell-struct This reference name signifies a combination of the cell
and struct data types. This is not a standard Matlab
data type.

uicontrol This is a user interface control, Matlab's way of ma-
nipulating GUI objects. The uicontrol Matlab is
required to create it.

figure This is a figure, and is another Matlab user interface
construct. The figure Matlab command is required
to create it.

Another important Matlab concept is that of global data. By defining any specific variable
(regardless of data type) to be global, it is accessible from any Matlab unit of code. This is
analagous to common data blocks in the FORTRAN-77 language.

Lastly, it is important to note that each unit of Matlab code is used as either a function
or as a procedure. This distinction is critical in terms of accessing and modifying data, and is
analogous to functions and procedures in the C/C++ languages.

2.1.4 Pertinent TERMAP Concepts

There are two important aspects of TERMAP that have shaped certain design characteristics
of this package.

First is the concept of a parameter index code (PIC). Each data variable within TERMAP
has its own unique PIC, and through the use of FORTRAN-77 equivalence statements each
variable is accessible and/or modifiable through this identification number. This is extremely
convienent from a programming perspective, and all TERMAP I/O within this package has
been built exclusively around PICs.

Second is a limitation with TERMAP itself. Specifically, TERMAP cannot be used in a
thrust-throttling mode in order to a attain a desired thrust with the afterburner engaged. The
workaround employed in this package is to iteratively use TERMAP in a non-thrust throttling
mode while varying the afterburner setting. A Newton-Raphson scheme has been employed
for these iterations, and works quite well. For accuracies within 1%, a total of 2 iterations
are usually required. For accuracies within 0.1%, an order of magnitude increase, a total of 4
iterations are usually required.

36

2.2 Overall Structure and Decomposition

All files comprising the package are contained in a number of directories. Each of these direc-
tories represents a logical grouping of related files, and the term module is used to represent
this association. The modules comprising the program are outlined below.

Data This module contains user supplied/generated data files.

Genetic Algorithm This module contains Matlab code to perform function optimization us-
ing genetic algorithms.

Graphical User Interface This module contains Matlab code to control the graphical user
interface.

Initialization This module contains Matlab code to initialize global data used throughout the
program.

Installation Loss This module contains Matlab code to calculate the effects of engine instal-
lation losses.

Functional Areas This module contains Matlab code to perform the core functions of the
program.

Lower Level This module contains Matlab code to perform various utility-type tasks.

Mission This module contains Matlab code to perform mission analysis.

TERMAP I/O This module contains Matlab code to interface with TERMAP, along with a
user-supplied executable version of TERMAP itself.

Kriging This module contains Matlab code to perform function estimation using kriging.

The decomposition of each module is given in individual sections throughout the remainder
of this document. Again, these sections are intended to provide a higher level design description
only.

2.3 Data Module

The data module contains files which are either supplied by the user or generated during
program execution. In general, the program only supports files in ASCII text format and a
Matlab-specific data storage format.

2.3.1 User Supplied ASCII Text Data Files

For the case where an ASCII text file is assumed to contain numbers in a matrix format, the
load Matlab command is used to transfer the file contents to a matrix within Matlab memory.

The only other case where a user supplied ASCII text file is used by the program is for the
manipulation of a baseline TERMAP input file. This file is not, however, loaded into Matlab
memory. Further details encompassing the usage of a TERMAP input file by the program is
covered in Section 2.12.

37

2.3.2 I/O With Matlab Data Storage Format

The program has been designed to interact with Matlab data files which contain two variables:
GLOBAL.ELEMENTS and GLOBAL_DATA. The 6L0BAL_ELEMENTS variable is a vector which defines
what data elements are contained in the file. The GLOBAL_DATA variable is a combined cell
array and data structure which physically contains data element contents. Refer to the source
code for further details.

2.4 Genetic Algorithm Module

The genetic algorithm routines used in the program are based an existing public-domain pack-
age, named GAOT, developed by North Carolina State University. The fundamental operation
of the adapted version is the same as the original GAOT package, although significant changes
have been made to improve code efficiency and readability.

2.4.1 Purpose and High Level Operation

The purpose of the genetic algorithm module is to search for a design which optimizes a given
objective function. The GA operates by simulating the process of natural selection, with indi-
vidual designs treated as gene structures. Beginning with a randomly generated population of
designs, a new generation is created by random variations (mutations) and matings (crossovers)
of existing designs. This new generation is treated as a baseline population for another set of
mutations and crossovers, and the process repeats itself until termination criteria is met.

A key concept inherent to genetic algorithms is the fitness of a design. Fitness is a measure
of goodness, and must be a scalar quantity regardless of the number of design variables or
the number of design objectives. The convention used with this GA is that the higher the
fitness value the better. Maximization and minimization problems (or a combination of both
for the case of multiple objectives) are possible with care given toward the scaling of objective
quantities.

2.4.2 Accessing

The unit Genet ic_Algorithm is the subprogram driver, and is accessed as a Matlab function.
All inputs and outputs are passed in and out as data structures.

Inputs

There is a single input to the unit Genetic_Algorithm. It is a data structure with fields given
in Table 2.2.

Table 2.2: Genetic Algorithm Input Fields

Field Name Data Type Brief Description
DES_VAR_BOUNDS matrix Ranges for design variables.

0BJ_FCN string Name of the objective function.

POP.SIZE scalar Population size.

MAX_GEN scalar Maximum number of generations.

38

Genetic Algorithm Input Fields - continued

Field Name Data Type Brief Description
FIT.TOL scalar Tolerance for two fitnesses to differ.
AC_PER_GEN scalar Number of arithmetic crossovers per genera-

tion.
HC_PER_GEN scalar Number of heuristic crossovers per generation.
SC_PER_GEN scalar Number of simple crossovers per generation.
BM_PER_GEN scalar Number of boundary mutations per genera-

tion.
MNM_PER_GEN scalar Number of multi non uniform mutations per

generation.
NM_PER_GEN scalar Number of non uniform mutations per gener-

ation.
UM_PER_GEN scalar Number of uniform mutations per generation.
HC.RETRIES scalar Number of retries for a heuristic crossover.
MNM_SHAPE scalar Shape factor for a multi non-uniform muta-

tion.
NM_SHAPE scalar Shape factor for non-uniform mutation.
NGS_SEL_PROB scalar Selection probability for designs to be selected

to a new generation.

Outputs

There is a single output to the unit Genetic_Algorithm. It is a data structure with fields given
in Table 2.3

Table 2.3: Genetic Algorithm Output Fields

Field Name Data Type Brief Description

START_P0P matrix Starting population.
END_P0P matrix Ending population.
BEST.POP matrix Best design vector for each generation.
TRACE.INFO matrix Best and average fitness values for each gen-

eration.
OPT_DES_VEC vector Overall best design vector found by the opti-

mizer.

2.4.3 Global Data

Pre-Defined

There is no pre-defined global data required for operation.

39

Created for Processing

All global data created for processing by the GA begins with the prefix GA_. Each of the
inputs described in Section 2.4.2 has an associated global data parameter. For example, the
DES_VAR_BOUNDS data structure input has global data GA_DES_VAR_BOUNDS.

There are two additional global parameters defined. One is GA_NUM_DES_VAR, which is the
number of design variables. The other is GA_CURRENT_GEN, and represents the instantaneous
generation number during the simulated evolution.

2.4.4 Module Decomposition

A complete listing of all units within the GA module is given in Section 3.1. These routines
are a modification of the existing GAOT package, and no further design infomation is given in
this document.

2.5 Graphical User Interface Module

The graphical user interface routines used in the program have been created specifically for this
project. The concept of data elements, as described in the SUG, has driven the overall design.

2.5.1 Purpose and High Level Operation

The purpose of the graphical user interface module is to provide the user a convienent means
through which all functional areas of the program may be accessed. The GUI module itself acts
as a manager of data elements, where the user is responsible for defining the contents of input
data elements and the functional areas are responsible for defining the contents of output data
elements.

2.5.2 Accessing

The unit Display.Menu is the one initially accessed within the GUI module, and may be called
numerous times during program execution. It is the highest level unit, but should not be
considered the subprogram driver: the user is!

Inputs

There are no direct inputs to the GUI module.

Outputs

The direct outputs of the GUI module are a set of continuously updated Matlab figure handles
and uicontrol object handles which, in total, represent what the user actually sees on the screen.
(Refer to Using MATLAB Graphics by The Mathworks, Inc. for a comprehensive description
of handle graphics.)

Each of these are globally defined, and have variable names which begin with the H_ prefix.
These variables are created in the initialization module, and the data chapter of this document
provides additional information.

40

2.5.3 Global Data

Pre-Defined

All global data created within the Initializiation module is required.

Created for Processing

There are numerous occasions within the GUI code when global data is created for processing.
These are for low-level data passing, however, and are necessary due to a Matlab limitation.
Specifically, data variables must be defined globally in order to access/modify them within
uicontrol callback functions.

2.5.4 Module Decomposition

A complete listing of all units within the GUI module is given in Section 3.2. All of these units
are well documented, and further design aspects may be addressed within the code itself.

2.6 Initialization Module

The initialization module contains units which create global data that is used throughout the
program. A complete listing of the units comprising the initialization module is given in Sec-
tion 3.3. The global data initialized by each of these units is discussed in the data chapter of
this document.

2.7 Installation Loss Module

Two loss model types are supported by the program: a constant loss model and a non constant
loss model. The constant loss model is trivial, in that the difference between uninstalled thrust
and installed thrust is always a constant percentage. The non-constant loss model, however,
is a more realistic function of flight condition, engine sizing parameters, and engine cycle per-
formance. The calculations performed within this module are consistent with Aircraft Engine
Design by Mattingly, et. al.

2.7.1 Purpose and High-Level Operation

The purpose of the installation loss module is to reduce the uninstalled thrust value provided
by cycle analysis by the effects of inlet drag and nozzle drag. It operates by calculating a loss
coefficient for both the inlet and the nozzle, and then combining these with uninstalled thrust
to produce an overall installed thrust value.

2.7.2 Accessing

The unit Apply_Inst_Loss is the subprogram driver, and is invoked as a Matlab function. All
inputs are passed in either as vectors or scalars. All outputs are scalars.

41

Inputs

The inputs to the unit Apply_Inst_Loss, with names as given in the source code, are given in
Table 2.4.

Table 2.4: Installation Loss Model Inputs

Variable Name Data Type Brief Description

0NDES_PIC vector On design PIC vector.

0NDES_DAT vector On design data vector.

MAXENG.PIC vector Maximum engine limits PIC vector.

MAXENG.DAT vector Maximum engine limits data vector.

HINENG.PIC vector Minimum engine limits PIC vector.

MINENG.DAT vector Minimum engine limits data.

OFFDES.PIC vector Off design point PIC vector.

OFFDES.DAT vector Off design point data vector.

UN_THRUST scalar Uninstalled thrust.

Outputs

The outputs to the unit Apply_Inst_Loss, with names as given in the source code, are given
in Table 2.5.

Table 2.5: Installation Loss Model Outputs

Variable Name Data Type Brief Description

INLET.LC scalar Inlet loss coefficient.

NOZZLEJLC scalar Nozzle loss coefficient.

IN.THRUST scalar Installed thrust value.

MODEL.STATUS scalar Overall pass/fail of loss model.

2.7.3 Global Data

Pre-Defined

Global data with the C_, D_, and DLFT_ prefixes are required for processing.

Created for Processing

There is no global data created for processing.

2.7.4 Module Decomposition

A complete fisting of units within the installation loss module is given in Section 3.4. Again,
these units are well documented and further design issues may be addressed within the code
itself.

42

2.8 Functional Areas Module

The functional areas module serves as the ultimate interface between the GUI module and
other modules within the program. Separate drivers for each functional area manage overall
processing.

2.8.1 Purpose and High Level Operation

The purpose of the functional areas module is to create the contents of output data elements
based on the contents of user-defined input data elements. Each of the functional areas has
associated with it an executive unit which extracts the required data from input data elements,
performs data initialization necessary to use other modules, executes the core function, and
combines all output data into ASCII text.

2.8.2 Accessing

Each functional area is driven by an executive unit which ends with the suffix _Exec. Each
executive unit is invoked as a Matlab function, where all inputs are passed in as pre-defined
global data and all outputs are ASCII text cell arrays.

Inputs

The primary input is the global data structure S_DATA_STRUCT.

Outputs

For every case, the output is one or more cell arrays which contain ASCII text.

2.8.3 Global Data

Pre-Defined

The _Exec units require the use of global data beginning with the prefixes C_, G_, P_, S_, and
SE_. Refer to the source code and/or the data chapter for further details.

Created for Processing

For the _Exec cases which involve an aircraft mission, global D_ data described in Section 2.11.2
is created for processing.

For the _Exec cases which involve optimization, the global parameter PIC.POINTER is cre-
ated to associate PICs with data contained in design vectors. Also for these cases, global
data beginning with the prefixes 0_ and K_ are created for passing information to the objec-
tive function. The 0_ data contains objective information, while the K_ data contains kriging
information.

There are other case-specific global data which are created for processing, but not discussed
here. Refer to the source code for details.

43

2.8.4 Module Decomposition

Again, this module acts as an interface between the GUI and other modules within the program.
A complete listing of units comprising this module may be found Section 3.5.

2.9 Kriging Module

The kriging module contains the Matlab code necessary for performing pointwise function
estimation using a geostatistical procedure known as kriging. It contains a single unit of code,
Kriging.m, which is exactly the same as that given in Improving Algorithmic Efficiency of
Aircraft Engine Design for Optimal Performance by Millhouse. Consult this document for
further information.

2.10 Lower Level Module

The lower level module contains routines which are fairly general, and not specific to any other
module given in this SDD. A complete listing of the units comprising this module is given in
Section 3.6. Consult the source code itself for further information.

2.11 Mission Analysis Module

The mission analysis routines used in the program are based on the contents Mattingly's ref-
erence. It is important to note that these routines are independent of the mission analysis
program named OFFX which Mattingly created. Although OFFX is robust and its reuse is
highly desirable, the use of a completely different engine cycle model precludes its use. Rather
than completely re-engineer the existing OFFX package in order to use TERMAP for cycle
analysis, a new set of mission analysis codes has been created. The overall operation is similar
to the OFFX package, with many of the same series of calculations being performed. The
interface with the engine cycle analysis model is profoundly different, however, and provisions
have been introduced to make the mission analysis program more versatile.

2.11.1 Purpose and High Level Operation

The purpose of the mission analysis module is to evaluate combined aircraft and engine perfor-
mance throughout a given mission profile. It operates by sequentially processing each mission
leg, wherein calculations are performed based on the leg type, given data, and permissable
constraints.

2.11.2 Accessing

The unit Mission_Analysis is the subprogram driver, and is accessed as a Matlab function. All
inputs are passed in as pre-defined global data. All outputs are passed out in a data structure.

44

Inputs

The inputs to the unit Mission_Analysis are passed in as pre-defined global data. All of this
data begins with the prefix D_, as given in Table 2.6.

Table 2.6: Mission Analysis Input Data

Variable Name Data Type Brief Description
D_0NDES_T_5 scalar On design TERMAP T(5) value.
D_ONDES_PIC vector On design parameter index codes.
D_ONDES_DAT vector On design data.
D.MAXENG.PIC vector Maximum engine limits parameter index

codes.
D_MAXENG_DAT vector Maximum engine limits data.
D_MINENG_PIC vector Minimum engine limits parameter index

codes.
D_MINENG.DAT vector Minimum engine limits data.
D_DRG_TABLE matrix Drag table.
D_TO_WEIGHT scalar Takeoff weight.
D_NUM_ENGINES scalar Number of engines.
D_MAX_LIFT_COEFF scalar Maximum lift coefficient.
D_WING_AREA scalar Wing area.
D_WING_LOADING scalar Wing loading.
D_MACH_CRIT scalar Critical Mach number.
D_T0_VEL_RATI0 scalar Takeoff velocity ratio.
D_T0_FRICT_C0EFF scalar Takeoff friction coefficient.
D_GEAR_DRAG_COEFF scalar Additional friction coefficient for takeoff.
D_THRUST_PCNT_TOL scalar Thrust percentage increase tolerance.
D_INITIAL_BETA scalar Initial weight fraction.
D_MISS_PROFILE cell-struct Mission profile.
D_LEG_FAIL_OPT scalar Leg failure option.
D_AB_THR0T_T0L scalar Afterburner throttle tolerance.
D_AB_THROT_MAX_IT scalar Afterburner throttle maximum number of it-

erations.
D_INST_LOSS struct Installation loss model.

Outputs

There is a single output to the unit Mission_Analysis. It is a combined cell array and data
structure, where each cell array index corresponds to a mission leg and has structure fields for
individual calculations. These output fields are created by the unit Init_Miss_Output.

45

2.11.3 Global Data

Pre-Defined

In addition to that specified as input parameters, the mission analysis program requires addi-
tional global data to be defined prior to accessing. Specifically, all global data beginning with
the prefixes C_, E_, and LT_ are used. Further information concerning these may be found in
the data chapter of this document.

Created for Processing

The parameter D_MISS_OUTPUT is the only global parameter created for processing. It is con-
tinually updated during processing to assign calculations made for individual mission legs.

2.11.4 Module Decomposition

A complete listing of all units within the mission module is given in Section 3.7.
One basic requirement common to all mission legs is to obtain and use installed engine data.

The unit Get_Off_Design_Data serves this purpose for all cases, and is itself relatively simple.
One of the units it calls, however, is quite complex. Specifically, for the cases where throttling
to a thrust is required, the unit Get_Req_Unin_Data is responsible for the manipulation of
uninstalled TERMAP I/O along with the installation loss model in order to produce uninstalled
engine settings that yield a desired installed engine thrust.

2.12 TERMAP I/O Module

The program is designed to use TERMAP in a modified form. In its standard form, TERMAP
is intended to be used interactively by a human. In its newly modified form, TERMAP is
intended to be used autonomously by a computer. The differences between them strictly deal
with its interface and the manner in which it uses external files. The internal processing within
TERMAP is unchanged.

2.12.1 Purpose and High Level Operation

The purpose of the TERMAP I/O module is to perform engine cycle analysis using the
TERMAP computer program. In its modified state, TERMAP is a stand-alone executable
file which reads in the contents of two input ASCII text files and creates a single output ASCII
text file. The Matlab routines within this module are responsible for creating the TERMAP
input files, invoking TERMAP as a stand-alone operating system executable, and extracting
data from the output file.

2.12.2 Accessing

There is no specific driver for this module, although the routines comprising it are normally
sequentially accessed.

46

Inputs

The basic inputs to this module are always the same and are passed in as Matlab row vectors.
These vectors collectively define an engine cycle design, maximum engine limits, minimum
engine limits, an off design point, the data to be extracted from TERMAP during on design
cycle analysis, and the data to be extracted from TERMAP during off design cycle analysis.

Engine Cycle Design The engine cycle design is passed into the module as two Matlab row
vectors. One vector contains PIC codes, while the other contains data corresponding to
each PIC code. Both of these vectors are assumed to be of the same size, and each must
have 25 entries or less. The cycle parameters defined by these vectors have the net effect of
replacing data in the on design section of the baseline TERMAP input file supplied by the
user. As a simple example, suppose that the Matlab commands CYCLE.PIC = [1 1249]
and CYCLE_DAT = [10000 0.5] have been used to define the cycle input PIC and cycle
input data vectors, respectively. This would have the net effect of replacing the on design
ALT (altitude) specification in the baseline TERMAP input file with 10000, and the on
design VEL (mach number for this case) with 0.5. All other engine cycle design parameters
would be used as given in the baseline TERMAP input file.

Maximum Engine Limits The maximum engine limits are passed into the module as two
Matlab row vectors. One vector contains PIC codes, while the other contains the max-
imum limits corresponding to each PIC code. Both of these vectors are assumed to be
of the same size, and each must have 10 entries or less. The maximum limit param-
eters defined by these vectors have the net effect of introducing data in the on design
section of the baseline TERMAP input file supplied by the user. (Recall that it is an ex-
plicit requirement that the baseline TERMAP input file not contain any maximum limit
specifications whatsoever.) As a simple example, suppose that the Matlab commands
MAX_PIC = [800 932 1151] and MAX_DAT = [1500 1.2 2260] have been used to
define the maximum limit input PIC and maximum limit input data vectors, respectively.
This would have the net effect of introducing the necessary TERMAP constraint variables
(ENGMAX and MAXLIM) in the baseline TERMAP input file to require P(4) to be less than
1500, RMIX(l) to be less than 1.2, and T(4) to be less than 2260.

Minimum Engine Limits The minimum engine limits are passed into the module as two
Matlab row vectors. One vector contains PIC codes, while the other contains the min-
imum limits corresponding to each PIC code. Both of these vectors are assumed to be
of the same size, and each must have 5 entries or less. The minimum limit parame-
ters defined by these vectors have the net effect of introducing data in the on design
section of the baseline TERMAP input file supplied by the user. (Recall that it is an ex-
plicit requirement that the baseline TERMAP input file not contain any minimum limit
specifications whatsoever.) As a simple example, suppose that the Matlab commands
MIN_PIC = [1932] and MIN_DAT = [0.8] have been used to define the minimum limit
input PIC and minimum limit input data vectors, respectively. This would have the net
effect of introducing the necessary TERMAP constraint variables (ENGMIN and MINLIM)
in the baseline TERMAP input file to require RMIX(l) to be greater than 0.8.

TERMAP On Design Data Extraction The desired on design data parameters to be ex-
tracted from TERMAP are passed into the module as a single Matlab row vector. It must

47

have 20 entries or less, and only contains PIC codes. As a simple example, suppose that
the Matlab command ONDES.OUT = [764 657] has been used to define this vector. This
would cause the modified version of TERMAP to write the on design values for IFAIL
and FN to the on design section of the output file.

TERMAP Off Design Data Extraction The desired off design data parameters to be ex-
tracted from TERMAP are passed into the module as a single Matlab row vector. It
must have 20 entries or less, and only contains PIC codes. As a simple example, suppose
that the Matlab command 0FFDES_0UT = [764 657] has been used to define this vec-
tor. This would cause the modified version of TERMAP to write the off design values for
IFAIL and FN to the off design section of the output file.

Outputs

There is a single output to this module. It is a single Matlab vector which always contains
40 entries. The first 20 are data values extracted from TERMAP during off design evaluation,
while the second 20 are data values extracted from TERMAP during on design evaluation. The
on design values are actually created first within TERMAP, but are located in the latter half
of this output vector nonetheless. The TERMAP extraction vectors described in the previous
two sections are used for determining the correspondence between data values and PIC codes.
Refer to the source code for good examples on how the overall I/O is accomplished.

In the event of a physical TERMAP crash, all numerical data in the output vector will be set
to the number defined globally as E_TERMAP_CRASH. The ability to recover from a crash is ab-
solutely critical, particularly for engine optimization runs: the number of individual TERMAP
calls could easily be in the thousands.

2.12.3 Global Data

Pre-Defined

The variables P_TERMAP_PATH and P_TERMAP_EXE are required for processing. Refer to the data
chapter for a description of these parameters.

Created for Processing

There is no global data created for processing.

2.12.4 Module Decomposition

A complete listing of all units within the TERMAP I/O module is given in Section 3.8. These
units are sequentially accessed in the following order.

1. The unit Cre at e_Main_ Input is called to copy the user defined baseline TERMAP input
file to the TERMAP I/O directory. The new file is named INPUT_FILE_1. Note: This is
only needed once.

2. The unit Gen_Termap_Vec is called to map the input vectors described in Section 2.12.2
to a single, 170 element vector. All unused parameters are mapped to null entries, with
unused PIC codes assigned a value of -1 and unused data assigned a value of 0.

48

3. The unit Write_Termap_Infile is called to write the 170 element vector to a file named
INPUT_FILE_2 in the TERMAP I/O directory.

4. The unit Invoke_Termap is called to execute the modified version of TERMAP at the
operating system level.

5. The unit Did_Termap_Crash is called to determine if TERMAP crashed.

6. If a crash did not occur, then the unit Get_Ter_0ut_40 is called to read in the contents of
the newly created TERMAP output file, named 0UTPUT_FILE, which contains 40 elements.

Further details encompassing the overall TERMAP interface with external files are not given
in this document. U.S. Government personnel may find this information on a corresponding
DoD-Limited CD-ROM.

49

Chapter 3

Unit Listing

50

Overview

The purpose of this section is to provide a complete listing of all source code unit names
comprising the Integrated Multi-Objective Multi-Disciplinary Jet Engine Design Optimization
Program. The unit names are organized by the modules described in the SDD.

3.1 Genetic Algorithm

The units comprising the genetic algorithm module are given in Table 3.1.

Table 3.1: Genetic Algorithm Units

Exact Name Long Name - Purpose
Arith_Crossover Arithmetic Crossover - To create two child designs

from two parent designs by performing a linear inter-
polation between them.

Boundary_Mutation Boundary Mutation - To randomly change one of the
parameters of a design to either the upper or lower
bound.

Delta Delta - To return the amount of change for a design
variable.

Genet i c_Algorithm Genetic Algorithm - To perform function optimiza-
tion using genetic algorithms.

Heuristic_Crossover Heuristic Crossover - To create two child designs from
two parent designs by extrapolating in the direction
of the better parent.

Initialize Initialize - To create an initial population of designs
for use with a genetic algorithm optimizer.

Multi_Nonunif.Mutation Multi-Parameter Nonuniform Mutation - To change
all of the parameters of a design based on a non-
uniform probability distribution.

Nonunif„Mutation Nonuniform Mutation - To change one of the param-
eters of a design based on a non-uniform probability
distribution.

Norm_Geom_Select Normalized Geometric Distribution Selection - To se-
lect designs from an old population to carry over to
a new population based on the normalized geometric
distribution.

Rand_Choose Random Choose - To randomly choose one of two
parameters.

Rand_Choose_Idx Random Choose Index - To randomly choose an index
into a vector.

Simple_Crossover Simple Crossover - Two create two child designs from
two parent designs by swapping the design variables
before and after a randomly chosen position.

51

Genetic Algorithm Units - continued

Exact Name Long Name - Purpose
Unif.Mutation Uniform Mutation - To change one of the parameters

of a design based on a uniform probability distribu-
tion.

3.2 Graphical User Interface

The units comprising the graphical user interface module are given in the Table 3.2.

Table 3.2: Graphical User Interface Units

Exact Name Long Name - Purpose
Add_To_Messages Add To Messages - To add an operator message for

display.
Che ck_For.Errors Check For Errors - To check user data for possible

errors.
Clear_Menu Clear Menu - To clear data within a GUI menu.
Disp_PIC_Str Display PIC String - To display the paramter index

code / TERMAP variable name correlation.
Display_Menu Display Menu - To display and activate a GUI menu.
Di splay.Output Display Output - To display output text on the

screen.
Edit.Element Edit Element - To edit a data element.
Execute_Prog Execute Program - To execute a program correspond-

ing to the displayed menu.
Exit_Program Exit Program - To exit the program.
File_For_Open File For Open - To obtain the filename and pathname

of a user selected file.
File_For_Save File For Save - To obtain the filename and pathname

for a user defined file.
Finish_UI_Data Finish User Interface Data - To set global data indi-

cating an update to the global data structure is re-
quired.

Gen_Status_Str Generate Status String - To generate a cell array of
strings which represents the data element status for
a particular menu.

Get_AC_Sizing Get Aircraft Sizing Parameters - To get the sizing
configuration of a scaleable aircraft from the user.

Get_Inst_Loss Get Installation Loss Model - To get the installation
loss model configuration from the user.

Get_Kriging Get Kriging Usage - To get an overall use or don't
use.

52

Graphical User Interface Units - continued

Exact Name Long Name - Purpose
Get_Miss_Profile Get Mission Profile - To get a mission profile from the

user.
Get_0bj_W0_Miss Get Objectives Without Mission - To get a design

objective configuration without mission from the user.
Get_PIC_Data_Pairs Get PIC Data Pairs - To get parameter index code /

data pairs from the user.
Get_PIC_Data_Table Get PIC Data Table - To get a table of parameter

index codes and data from the user.
Get_PIC_Values Get PIC Values - To get a list of parameter index

codes from the user.
Get_Standard_Data Get Standard Data - To get data from the user.
Invoke _Text _Edit Invoke Text Editor - To invoke a text editor to allow

the user to edit text files.
Leg_Num_Callback Leg Number Callback - To set mission data corre-

sponding to a leg number.
Leg_Type_Callback Leg Type Callback - To set mission data correspond-

ing to a leg type.
Load_Data_2 Load Data 2 - To transfer data previously loaded from

a *.mat file into the program's current menu struc-
ture.

Load_GUI_Data Load GUI Data - To load GUI data from a file.
Mat_File_Load Mat File Load - To select the filename for loading

desired data elements from a *.mat file.
Mat_File_Save Mat File Save - To select the filename for saving de-

sired data elements to a *.mat file.
Reset.Element Reset Element - To reset a data element to its default

configuration.
Rtn_To_Main_Menu Return To Main Menu - To return the GUI to the

main menu.
Save_Data Save Data - To save desired data elements to a *.mat

file.
Save_GUI_Data Save GUI Data - To save GUI data for a particular

menu.
Sel_Data_Load Select Data Load - To allow the user to select existing

data elements from a data file.
Sel_Data_Save Select Data Save - To get selected data elements for

file save from the user.
Set_Data_Vals Set Data Vals - To display the data and values corre-

sponding to a particular leg type selection.
Size_Type_Callback Size Type Callback - To display the data and values

corresponding to a particular A/C sizing type scheme.

53

Graphical User Interface Units - continued

Exact Name Long Name - Purpose
Updat e _Leg_Dat a Update Leg Data - To update the mission profile after

user editing.

3.3 Initialization

The units comprising the initialization module are given in the Table 3.3.

Table 3.3: Initialization Unit Listing

Exact Name Long Name - Purpose
Gen_PIC_Str_Di splay Generate PIC Strings For Display - To create the

strings relating parameter index codes to TERMAP
variable names.

Init_Data_Struct Initialize Data Structure - To initialize the global data
element structure.

Init_Errors Initialize Errors - To initialize the errors which can
be captured within the GUI prior to interaction with
other modules.

Init_Graphics Initialize Graphics - To initialize graphics data.
Init _Kriging_Dat a Initialize Kriging Data - To initialize constants and

kriging model parameters.
Init_Leg_Mapping Initialize Leg Mapping - To initialize the relationship

between each mission leg type and its required input
data.

Init_Leg_Strings Initialize Leg Strings - To initialize the strings asso-
ciated with the name of each leg type.

Init_Leg_Types Initialize Leg Types - To initialize mission leg types.
Init_Loss_Types Initialize Loss Types - To initialize the installation

loss types.
Init.Messages Initialize Messages - To initialize the user-messages

which can be displayed by the graphical user inter-
face.

Init_Miss_Constants Initialize Mission Constants - To initialize the global
data which is primarily used for mission analysis.

Init_PIC_Str Initialize Parameter Index Code Strings - To associate
character strings for each TERMAP parameter index
code.

Init _S izing.Type s Initialize Sizing Types - To initialize scaleable aircraft
sizing types.

Main Main - To initialize all global data and data struc-
tures used by the program, and to pass control to the
graphical user interface.

54

3.4 Installation Loss

The units comprising the installation loss module are given in Table 3.4.

Table 3.4: Installation Loss Module Unit Listing

Exact Name Long Name - Purpose
Apply_Inst_Loss Apply Installation Losses
Calc.IMS Calculate Integral Mean Slope
Calc_Sup_Nozzle_Drag Calculate Subsonic Nozzle Drag Coefficient
Calc_Total_Press Calculate Total Pressure
Calc_Total_Temp Calculate Total Temperature
Gen_Loss_Tabs Generate Non-Constant Installation Loss Drag Tables
Get_Sub_Inlet_Loss Get Subsonic Inlet Loss Coefficient
Get_Sub_Nozzle_Loss Get Subsonic Nozzle Loss Coefficinet
Get_Sup_Inlet_Loss Get Supersonic Inlet Loss Coefficient
Get_Sup_Nozzle_Loss Get Subsonic Nozzle Loss Coefficient
Get_Tra_Nozzle_Loss Get Transonic Nozzle Loss Coefficient

3.5 Functional Areas

The units comprising the functional areas module are given in Table 3.5.

Table 3.5: Functional Areas Unit Listing

Exact Name Long Name - Purpose
EOWIM_FAC_Exec Engine Optimization With Mission Fixed Aircraft

Executive - To perform engine optimization with mis-
sion for a fixed aircraft.

EOWIM_FAC_Fcn Engine Optimization With Mission Fixed Aircraft
Objective Function - To determine a given design's
objective function value as part of the optimization
process.

EOWIM.SACJExec Engine Optimization With Mission Scaleable Aircraft
Executive - To perform engine optimization with mis-
sion for a scaleable aircraft.

EOWIM_SAC_Fcn Engine Optimization With Mission Scaleable Aircraft
Objective Function - To determine a given design's
objective function value as part of the optimization
process.

E0W0M_Exec Engine Optimization Without Mission Executive - To
perform engine optimization without mission.

E0W0M_Fcn Engine Optimization Without Mission Objective
Function - To determine a given design's objective
function value as part of the optimization process.

55

Functional Areas Unit Listing - continued

Exact Name Long Name - Purpose
SACA_Exec Stand Alone Engine Cycle Analysis Executive - To

perform stand alone engine cycle analysis.
SAMA.Exec Stand Alone Mission Analysis Executive - To perform

stand alone mission analysis.

3.6 Lower Level

The units comprising the lower level module are given in the Table 3.6.

Table 3.6: Lower Level Unit Listing

Exact Name Long Name - Purpose
Calc_Scaled_Obj Calculate Scaled Objective - To determine the scaled

objective value for a design objective.
Calc_Takeoff.Weight Calculate Takeoff Weight - To calculate the takeoff

weight of an aircraft as a function of fuel weight and
sizing parameters.

Change_To_Dir Change To Directory - To change the current Matlab
working directory.

Compact _De s ign_Var Compact Design Variables - To compact a design vari-
able configuration by removing unused entries.

Compact_Engine_Spec Compact Engine Specification - To compact an engine
specification by removing unused entries.

Delete_File Delete File - To delete a file.
Get_File_Size Get File Size - To determine the size of a file in bytes.
Linear_Interp Linear Interpolation - To perform linear interpolation

for data within a matrix data table.
Load_Data Load Data - To transform the contents of a file into

a matrix.
Map_Box_To_Pos Map Box To Position - To map two x-y coordinate

pairs into a Matlab position vector.
Map_Coords Map Coordinates - To map x-y coordinate pairs de-

fined in a reference domain to x-y coordinates defined
in another domain.

Mat_To_Cell Matrix To Cell Array - To create a cell array of strings
corresponding to a matrix.

Write_Mat_To_File Development - need to move

3.7 Mission

The units comprising the mission module are given in Table 3.7.

56

Table 3.7: Mission Unit Listing

Exact Name Long Name - Purpose
Assn_Leg_Out_Data Assign Leg Output Data - To assign output data for

a mission leg.
Best_Cruise_Mach Best Cruise Mach - To evaluate a best cruise mach /

best cruise altitude mission leg.
Calc_DG_BCMBCA_Leg To calculate the delta-gamma product for a best

cruise mach / best cruise altitude mission leg.
Calc_DP_LOIT_Leg To calculate the drag parameter for a loiter mission

leg.
Calc_Drag_Coeff To calculate the drag coefficient of an object.
Calc_Drag_Force To calculate the drag force acting on an object.
Calc_Dyn_Press To calculate the dynamic pressure induced by flight

velocity at a given altitude.
Calc_FW_BCMBCA_Leg To calculate the final weight of an A/C after a best

cruise mach / best cruise altitude mission leg.
Calc_FW_CA_Leg To calculate the final weight of an A/C after a climb

and acceleration leg.
Calc_FW_CASC_Leg To calculate the final weight of an A/C after a con-

stant altitude/speed cruise mission leg.
Calc_FW_CAST_Leg To calculate the final weight of an A/C after a con-

stant altitute/speed turn mission leg.
Calc_FW_CEHM_Leg To calculate the final weight of an A/C after a con-

stant energy height maneuver mission leg.
Calc_FW_CSC_Leg To calculate the final weight of an A/C after a con-

stant speed climb mission leg.
Calc_FW_HA_Leg To calculate the final weight of an A/C after a hori-

zontal acceleration mission leg.
Calc_FW_LOIT_Leg To calculate the final weight of an A/C after a loiter

mission leg.
Calc_FW_TA_Leg To calculate the final weight of an A/C after the ac-

celeration portion of a takeoff mission leg.
Calc_FW_TR_Leg To calculate the final weight of an A/C after the ro-

tation portion of a takeoff mission leg.
Calc_FW_WU_Leg To calculate the final weight of an A/C after a

warmup mission leg.
Calc_Lift_Coeff To calculate the lift coefficient of an A/C.
Calc_Stall_Vel To calculate the minimum speed at which flight is

possible for an A/C.
Climb_And_Accel Climb And Acceleration - To evaluate a climb and

acceleration mission leg.
Const_Alt_Spd_Crs Constant Altitude/Speed Cruise - To evaluate a con-

stant altitude/speed cruise mission leg.

57

Mission Unit Listing - continued

Exact Name Long Name - Purpose
Const_Alt_Spd_Turn Constant Altitude/Speed Turn - To evaluate a con-

stant altitude/speed turn mission leg.
Const_EH_Man Constant Energy Height Maneuver - To evaluate a

constant energy height maneuver mission leg.
Const_Spd_Clmb Constant Speed Climb - To evaluate a constant speed

climb mission leg.
Convert_Mach_To_Vel Convert Mach Number To Velocity - To convert a

mach number at a given altitude to a velocity.
Deliv_Exp Deliver Expendables - To evaluate a deliver expend-

ables mission leg.
Gen_Atm_Table Generate Atmospheric Data Table - To generate a

data table which contains atmospheric properties as
a function of altitude.

Gen_Drg_Table Generate Drag Table - To generate a drag table for
an object.

Get_Off_Design_Data Get Off Design Data - To determine off design engine
performance given an engine design and an off design
point.

Get _Req_Unin_Data Get Required Uninstalled Data - To determine the
required uninstalled engine settings that should be
used to satisfy an installed thrust requirement

Horizontal_Accel Horizontal Acceleration - To evaluate a horizontal ac-
celeration mission leg.

Init_Leg_Out_Data To initialize output data for a mission leg.
Init_Miss_Output To initialize all output data for mission analysis.
Loiter Loiter - To evaluate a loiter mission leg.
Mission_Analysis Mission Analysis - To perform A/C mission analysis.
Proc_Miss_Leg Process Mission Leg - To process a mission leg.
Takeoff Takeoff - To evaluate a takeoff mission leg.
Throttle_AB Throttle Afterburner - To throttle the afterburner set-

ting in order to attain a desired thrust.
Unused_Leg Unused Leg - To evaluate an unused mission leg.
Warm_Up Warm Up - To evaluate a warm up mission leg.

3.8 TERMAP I/O

The units comprising the TERMAP I/O module are given in Table 3.8.

58

Table 3.8: TERMAP I/O Unit Listing

Exact Name Long Name - Purpose
Create_Main_Input To create a copy of the user defined primary

TERMAP input file in the directory which contains
the TERMAP executable.

Did_Termap_Crash Did TERMAP Crash - To determine whether or not
TERMAP physically crashed during execution.

Gen_Termap_Vec Generate TERMAP Vector - To assemble segments
of an engine design into a single vector which, after
further processing, can be fed into TERMAP.

Get_Ter_0ut_40 Get TERMAP Output With 40 Entries - To read in
numerical values from the TERMAP output data file
which contains 40 elements.

Invoke_Termap Invoke TERMAP - To call TERMAP for engine cycle
analysis.

TERMAP Executable The TERMAP executable file is user supplied. Refer
to the SUG and SDD for details.

Write_Termap_Infile Write TERMAP Input File - To create the TERMAP
second input file in a form suitable for reading by
TERMAP.

3.9 Kriging

The kriging module contains a single unit of code, Kriging.m. Refer to Improving Algorithmic
Efficiency of Aircraft Engine Design for Optimal Performance by Millhouse for any details.

59

Chapter 4

Data Listing

60

Overview

The purpose of this section is to provide a complete listing of all global data created within the
initialization module of the Integrated Multi-Objective Multi-Disciplinary Jet Engine Design
Optimization Program. The data given in this section is organized by the unit used to create
it.

4.1 Init Graphics

The global data defined by this unit is given in Table 4.1.

Table 4.1: Global Data Created by Init Graphics

Name Data Type Brief Description
H_FIG_OPMSG figure The operator message window figure graphics

handle.
H_FIG_0PTI0NS figure The options window graphics handle.
H_FIG_STATUS figure The status window graphics handle.
H_FIG_DATA figure The data window graphics handle.
H_UI_0PT_1 uicontrol The first option graphics handle.
H_UI_0PT_2 uicontrol The second option graphics handle.
H_UI_0PT_3 uicontrol The third option graphics handle.
H_UI_0PT_4 uicontrol The fourth option graphics handle.
H_UI_0PT_5 uicontrol The fifth option graphics handle.
H_UI_0PT_6 uicontrol The sixth option graphics handle.
H_UI_0PT_7 uicontrol The seventh option graphics handle.
H_UI_0PMSG uicontrol The operator message graphics handle.
H_UI.STATUS uicontrol The status graphics handle.
H_UI_DATA uicontrol The data graphics handle.
G_NUM_MENUS scalar The total number of menus.
G_CURRENT_MENU scalar The currently displayed menu. Initially set to

G_PRIMARY_MENU.
G_PRIMARY_MENU scalar The reference number for the primary menu.
G_SACA_MENU scalar The reference number for the stand alone cy-

cle analysis menu.
G_SAMA_MENU scalar The reference number for the stand alone mis-

sion analysis menu.
G_EOWIM_FAC_MENU scalar The reference number for the engine optimiza-

tion with mission for a fixed aircraft menu.
G_EOWIM_SAC_MENU scalar The reference number for the engine opti-

mization with mission for a scaleable aircraft
menu.

G_E0W0M_MENU scalar The reference number for the engine optimiza-
tion without mission menu.

61

Global Data Created by Init Graphics - continued

Name Data Type Brief Description
G_ADD_FCNS_MENU scalar The reference number for the additional func-

tions menu.
G_OPMSG_FIG_TITLE cell A cell array of strings. Each index corre-

sponds to a menu, and contains the text string
to be displayed as the title within the operator
message window.

G_OPTIONS_FIG_TITLE cell A cell array of strings. Each index corre-
sponds to a menu, and contains the text string
to be displayed as the title within the options
figure.

G_STATUS_FIG_TITLE cell A cell array of strings. Each index corre-
sponds to a menu, and contains the text string
to be displayed as the title within the status
figure.

G_DATA_FIG_TITLE cell A cell array of strings. Each index corre-
sponds to a menu, and contains the text string
to be displayed as the title within the data fig-
ure.

G_0PT_STR_1 cell A cell array of strings. Each index corre-
sponds to a menu, and contains the text string
to be displayed for the first option.

G_0PT_FCN_1 cell A cell array of strings. Each index corre-
sponds to a menu, and contains the Matlab
commands or unit to be invoked upon selec-
tion of the first option.

G_0PT_STR_2 cell A cell array of strings. Each index corre-
sponds to a menu, and contains the text string
to be displayed for the second option.

G_0PT_FCN_2 cell A cell array of strings. Each index corre-
sponds to a menu, and contains the Matlab
commands or unit to be invoked upon selec-
tion of the second option.

G_0PT_STR_3 cell A cell array of strings. Each index corre-
sponds to a menu, and contains the text string
to be displayed for the third option.

G_0PT_FCN_3 cell A cell array of strings. Each index corre-
sponds to a menu, and contains the Matlab
commands or unit to be invoked upon selec-
tion of the third option.

G_0PT_STR_4 cell A cell array of strings. Each index corre-
sponds to a menu, and contains the text string
to be displayed for the fourth option.

62

Global Data Created by Init Graphics - continued

Name Data Type Brief Description
G_0PT_FCN_4 cell A cell array of strings. Each index corre-

sponds to a menu, and contains the Matlab
commands or unit to be invoked upon selec-
tion of the fourth option.

G_0PT_STR_5 cell A cell array of strings. Each index corre-
sponds to a menu, and contains the text string
to be displayed for the fifth option.

G_0PT_FCN_5 cell A cell array of strings. Each index corre-
sponds to a menu, and contains the Matlab
commands or unit to be invoked upon selec-
tion of the fifth option.

G_0PT_STR_6 cell A cell array of strings. Each index corre-
sponds to a menu, and contains the text string
to be displayed for the sixth option.

G_0PT_FCN_6 cell A cell array of strings. Each index corre-
sponds to a menu, and contains the Matlab
commands or unit to be invoked upon selec-
tion of the sixth option.

G_0PT_STR_7 cell A cell array of strings. Each index corre-
sponds to a menu, and contains the text string
to be displayed for the seventh option.

G_0PT_FCN_7 cell A cell array of strings. Each index corre-
sponds to a menu, and contains the Matlab
commands or unit to be invoked upon selec-
tion of the seventh option.

G_DEF_OPMSG_STR cell A cell array of strings. Each index corre-
sponds to a menu, and contains the default
message to be displayed in the operator mes-
sage window.

G_DEF_DATA_STR cell A cell array of strings. Each index corre-
sponds to a menu, and contains the default
information to be displayed in the data win-
dow.

G_F0NTS cell-struct A combined cell array and data structure con-
taing font information. Each index corre-
sponds to a menu.

G_0RIG_11_PT scalar A font size to be used for GUI scaling on mul-
tiple platforms.

G_0RIG_10_PT scalar A font size to be used for GUI scaling on mul-
tiple platforms.

G_0RIG_9_PT scalar A font size to be used for GUI scaling on mul-
tiple platforms.

63

Global Data Created by Init Graphics - continued

Name Data Type Brief Description

U.UPDATE scalar Reference number indicating that the user has
completed a process and an update to the
global data structure is required.

U_NO_UPDATE scalar Reference number indicating that the user has
canceled a process and no update to the global
data structure is required.

4.2 Init Sizing Types

The global data defined by this unit is given in Table 4.2.

Table 4.2: Global Data Created by Init Sizing Types

Name Data Type Brief Description

SZT_NUM_TYPES scalar The total number of sizing types supported.

SZT_LINEAR scalar Reference number for the linear sizing type.
SZT_NONLINEAR scalar Reference number for the nonlinear sizing

type.
SZT_COEFF_PER_TYPE vector Vector containing the number of coefficients

for each sizing type.

4.3 Init Loss Types

The global data defined by this unit is given in Table 4.3.

Table 4.3: Global Data Created by Init Sizing Types

Name Data Type Brief Description

ILT.CONST scalar Reference number for a constant installation
loss model.

ILT_N0N_C0NST scalar Reference number for a non-constant installa-
tion loss model.

4.4 Init Data Struct

The global data defined by this unit is given in Table 4.4.

Table 4.4: Global Data Created by Init Data Struct

Name Data Type Brief Description

S_NUM_ELEMENTS scalar The total number of data element types.

64

Global Data Created by Init Data Struct - continued

Name Data Type Brief Description
SE_TER_IN_FILE scalar Data element reference number for a

TERMAP input file.
SE_TER_IN_TYPE scalar Data element reference number for the type

of a TERMAP input file. This is currently
unused.

SE_ENG_ONDES scalar Data element reference number for an engine
on design specification.

SE_ENG_MAXENG scalar Data element reference number for an engine
maximum limit specification.

SE_ENG_MINENG scalar Data element reference number for an engine
minimum limit specification.

SE_0FF_PT scalar Data element reference number for an off de-
sign point specification.

SE_DES_0N_0UT scalar Data element reference number for desired on
design outputs.

SE_DES_0FF_0UT scalar Data element reference number for desired off
design outputs.

SE_AC_DRAG_FILE scalar Data element reference number for an aircraft
drag file.

SE_AC_CONSTANTS scalar Data element reference number for aircraft
constants.

SE_AC_TO_WEIGHT scalar Data element reference number for aircraft
takeoff weight.

SE_AC_VAR_SIZE scalar Data element reference number for a scaleable
aircraft sizing configuration.

SE_MISS_PROFILE scalar Data element reference number for a mission
profile.

SE_MISS_CONSTANTS scalar Data element reference number for mission
constants.

SE_INST_LOSS scalar Data element reference number for an instal-
lation loss model configuration.

SE_DES_VAR scalar Data element reference number for a design
variable configuration.

SE_DES_OBJ_WIM scalar Data element reference number for a design
objectives with mission configuration.

SE_DES_0BJ_W0M scalar Data element reference number for a design
objectives without mission configuration.

SE_GA_0PTS scalar Data element reference number for genetic al-
gorithm options.

SE_GA_END_POP scalar Data element reference number for genetic al-
gorithm end population.

65

Global Data Created by Init Data Struct - continued

Name Data Type Brief Description

SE_GA_BEST_POP scalar Data element reference number for genetic al-
gorithm best population,

SE_GA_TRACE_INFO scalar Data element reference number for genetic al-
gorithm trace information.

SE_OPT_DES_VAR scalar Data element reference number for genetic al-
gorithm best solution.

SE_CYCLE_ANALYSIS scalar Data element reference number for cycle anal-
ysis output.

SE.MISS.ANALYSIS scalar Data element reference number for mission

analysis output.

SE.KRIGING scalar Data element reference number for kriging us-

age.

S_NUM_EDIT_TYPES scalar The total number of data element edit types.

STJPICS scalar Reference number for editing a data element
consisting of parameter index codes only.

ST_PIC_DATA_PRS scalar Reference number for editing a data element
consisting of parameter index codes and a sin-
gle parameter for each.

ST_PIC_DATA_TAB scalar Reference number for editing a data element
consisting of parameter index codes and mul-
tiple parameters for each.

ST_MISS_PROFILE scalar Reference number for editing the mission pro-
file data element.

ST.STANDARD scalar Reference number for editing a data element
consisting of numerical data only.

ST_FILE_INPUT scalar Reference number for editing a data element
consisting of a file specification.

ST_DISP_STRING scalar Reference number for viewing a data element
comprised of ASCII text strings.

ST_TER_IN_TYPE scalar Currently unused.

ST_AC_VAR_SIZE scalar Reference number for editing the scaleable air-
craft data element.

ST.OBJ.WOM scalar Reference number for editing the design ob-
jectives without mission data element.

ST_INST_LOSS scalar Reference number for editing the installation
loss model data element.

ST.KRIGING scalar Reference number for editing the kriging us-

age data element.

S_MEN_DATA_MAP cell The mapping between menus and the data
which it contains. Each cell array index cor-
responds to a menu, and contains a vector of
data element reference numbers.

66

Global Data Created by Init Data Struct - continued

Name Data Type Brief Description
S_DATA_STRUCT cell-struct The global data structure is used by the

graphical user interface. It is a two dimen-
sional cell array, where the first index corre-
sponds to menu and the second index corre-
sponds to data element position. The data
available into this 2D cell array is a data struc-
ture with multiple fields containing data ele-
ment information.

DEF_DATA_STRUCT cell-struct The default global data structure.

4.5 Init Leg Types

The global data defined by this unit is given in Table 4.5.

Table 4.5: Global Data Created by Init Leg Types

Name Data Type Brief Description
L_NUM_TYPES scalar The total number of mission leg types.
LT.UHUSED scalar Reference number for an unused mission leg.
LT_CSC_MINANG scalar Reference number for a constant speed climb

mission leg with a minimum climb angle lim-
itation.

LT_CSC_MAXDIST scalar Reference number for a constant speed climb
mission leg with a maximum distance limita-
tion.

LT_CSC_MINRATE scalar Reference number for a constant speed climb
mission leg with a minimum climb rate limi-
tation.

LT_CSC_MAXTIME scalar Reference number for a constant speed climb
mission leg with a maximum time limitation.

LT_HA_MAXDIST scalar Reference number for a horizontal accelera-
tion mission leg with a maximum distance lim-
itation.

LT_HA_MAXTIME scalar Reference number for a horizontal accelera-
tion mission leg with a maximum time limita-
tion.

LT_CA_MINANG scalar Reference number for a climb and accelera-
tion mission leg with a minimum climb angle
limitation.

LT_CA_MAXDIST scalar Reference number for a climb and acceleration
mission leg with a maximum distance limita-
tion.

67

Global Data Created by Init Leg Types - continued

Name Data Type Brief Description
LT_CA_MINRATE scalar' Reference number for a climb and accelera-

tion mission leg with a minimum climb rate
limitation.

LT_CA_MAXTIME scalar Reference number for a climb and acceleration
mission leg with a maximum time limitation.

LT_T0 scalar Reference number for a takeoff mission leg.
LT.CASCJDIST scalar Reference number for a constant altitude

speed cruise mission leg with a distance spec-
ification.

LT_CASC_TIME scalar Reference number for a constant altitude
speed cruise mission leg with a time specifi-
cation.

LT.CAST scalar Reference number for a constant altitude
speed turn mission leg.

LT_BCMBCA_DIST scalar Reference number for a best cruise mach best
cruise altitude mission leg with a distance
specification.

LT_BCMBCA_TIME scalar Reference number for a best cruise mach best
cruise altitude mission leg with a time speci-
fication.

LT_LOIT_DIST scalar Reference number for a loiter mission leg with
a distance specification.

LT_LOIT_TIME scalar Reference number for a loiter mission leg with
a time specification.

LT_WU scalar Reference number for a warmup mission leg.
LT.CEHM scalar Reference number for a constant energy

height maneuver mission leg.
LT.DELX scalar Reference number for a deliver expendables

mission leg.

4.6 Init Leg Mapping

The global data defined by this unit is given in Table 4.6.

Table 4.6: Global Data Created by Init Leg Mapping

Name Data Type Brief Description
D_NUM_INDICES scalar Total number of mission data indices.
DX_ALT scalar Reference index for altitude.
DX_INIT_ALT scalar Reference index for initial altitude.
DX_FIN_ALT scalar Reference index for final altitude.
DX_MACH scalar Reference index for mach number.

68

Global Data Created by Init Leg Mapping - continued

Name Data Type Brief Description
DX_INIT_MACH scalar Reference index for initial mach number.
DX_FIN_MACH scalar Reference index for final mach number.
DX_DIST scalar Reference index for distance.
DX_DIST_MAX scalar Reference index for maximum distance.
DX_MIN_CLMBANG scalar Reference index for minimum climb angle.
DX_MIN_CLMBRATE scalar Reference index for minimum climb rate.
DX_TIME scalar Reference index for time.
DX_MAX_TIME scalar Reference index for maximum time.
DX_ROT_TIME scalar Reference index for rotation time.
DX.ABSET scalar Reference index for afterburner setting.
DX.ABOPT scalar Reference index for afterburner option.
DX_TURNS scalar Reference index for number of turns.
DX_LOAD_FCTR scalar Reference index for load factor.
DX_VERT_FRACT scalar Reference index for vertical fraction.
DX_DELIV_EXP scalar Reference index for expendable weight to be

delivered.
TYPE_DATA_MAP cell The mapping between mission leg types and

the required data for them. It is a cell array,
where each index corresponds to a leg type
and contains a vector of the reference data
indices given above.

4.7 Init Messages

This unit creates a variety of message strings for display. Each message variable begins with
the prefix M_. Refer to the actual source code for details.

4.8 Init PIC Str

This unit creates the variable P_PIC_STR. It is a cell array with 2288 entries, where each index
corresponds to a TERMAP PIC. Each entry contains the TERMAP variable name according
to the entry number PIC. For example, P_PIC_STR{1039} = 'SMRELL12';

4.9 Gen PIC Str Display

This unit creates the variable P_PIC_STR_DISPLAY. This is a cell array of ASCII text which the
user sees in the data window upon selecting the PIC/Variable button. Refer to the source code
for details.

69

4.10 Init Errors

global data defined by this unit is given in Table 4.7.

Table 4.7: Global Data Created by Init Errors

Name Data Type Brief Description
E_TEST_PASS scalar Signifies an overall pass of testing.
E_TEST_FAIL scalar Signifies an overall fail of testing.
E_USER_DEFINED scalar Signifies that one or more data elements are

undefined.
E.CONSISTENT scalar Signifies that one or more data elements are

inconsistent.
EC_TER_IN_FILE scalar Inconsistent TERMAP input file.
EC_TER_IN_TYPE scalar Unused
EC_ENG_ONDES scalar Signifies an inconsistent engine on design def-

inition.
EC_ENG_MAXENG scalar Signifies an inconsistent engine maximum lim-

its definition.
EC_ENG_MINENG scalar Signifies an inconsistent engine minimum lim-

its definition.
EC_0FF_PT scalar Signifies an inconsistent off design point defi-

nition.
EC_DES_0N_0UT scalar Signifies an inconsistent desired on design out-

put definition.
EC_DES_0FF_0UT scalar Signifies an inconsistent desired off design out-

put definition.
EC_AC_DRAG_FILE scalar Signifies an inconsistent aircraft drag file.
EC_AC_CONSTANTS scalar Signifies an inconsistent aircraft constants

definition.
EC_AC_TO_WEIGHT scalar Signifies an inconsistent aircraft gross takeoff

weight definition.
EC_AC_VAR_SIZE scalar Signifies an inconsistent scaleable aircraft def-

inition.
EC_MISS_PROFILE scalar Signifies an inconsistent mission profile defini-

tion.
EC_MISS_CONSTANTS scalar Signifies an inconsistent mission constants

definition.
EC_INST_LOSS scalar Signifies an inconsistent installation loss

model definition.
EC_DES_VAR scalar Signifies an inconsistent design variable defi-

nition.
EC_DES_OBJ_WIM scalar Signifies an inconsistent design objectives def-

inition for cases involving an aircraft mission.

70

Global Data Created by Init Errors - continued

Name Data Type Brief Description
EC_DES_0BJ_W0M scalar Signifies an inconsistent design objectives def-

inition for cases not involving an aircraft mis-
sion.

EC_GA_0PTS scalar Signifies an inconsistent GA options defini-
tion.

E_INTERACTION scalar Signifies a data element interaction conflict.
EI.SACA scalar Signifies a stand alone cycle analysis interac-

tion conflict.
EI_SAMA scalar Signifies a stand alone mission analysis inter-

action conflict.
EI_EOWIM_FAC scalar Signifies an engine optimization with mission

for fixed aircraft interaction conflict.
EI_EOWIM_SAC scalar Signifies an engine optimization with mission

for scaleable aircraft interaction conflict.
EI.EOWOM scalar Signifies an engine optimization without mis-

sion interaction conflict.

4.11 Init Miss Constants

With the exception of commonly used TERMAP PIC codes, the global data defined by this
unit is given in Table 4.8.

Table 4.8: Global Data Created by Init Miss Constants

Name Data Type Brief Description
C_THRUST_MODE scalar MODE value for TERMAP thrust throttling

operation.
C_T_5_M0DE scalar MODE value for TERMAP non-thrust throt-

tling operation.
C_N0_USE_AB scalar Value for permitting afterburner use.
C_MAY_USE_AB scalar Value for forbidding afterburner use.
C_NUM_TERMAP_CALLS scalar Number of TERMAP calls.
C_NUM_TERMAP_CRSHS scalar Number of TERMAP crashes.
C_YES scalar Value for yes.
C_N0 scalar Value for no.
C_LI_N0T_P0SS scalar Linear interpolation not possible.
C_LI_PDSS scalar Linear interpolation possible.
C_ATM_TABLE matrix Atmospheric data table.
C_ATMIDX_ALT scalar Index into atmospheric table at which altitude

is located.
C_ATMIDX_TEMP scalar Index into atmospheric table at which tem-

perature is located.

71

Global Data Created by Init Miss Constants - continued

Name Data Type Brief Description
C_ATMIDX_PRES scalar Index into atmospheric table at which pres-

sure is located.
C_ATMIDX_DELT scalar Index into atmospheric table at which delta is

located.
C_ATMIDX_DENS scalar Index into atmospheric table at which density-

is located.
C_ATMIDX_SSPD scalar Index into atmospheric table at which sound

speed is located.
C.ATMIDX.DELG scalar Index into atmospheric table at which delta

gamma product is located.
C_DRGIDX_MACH scalar Index into A/C drag table at which mach is

located.
C_DRGIDX_K1 scalar Index into A/C drag table at which kl is lo-

cated.
C_DRGIDX_K2 scalar Index into A/C drag table at which k2 is lo-

cated.
C_DRGIDX_CDO scalar Index into A/C drag table at which cdo is

located.
C_DRGIDX_MSCK scalar Index into A/C drag table at which msck is

located.
C_GRAV_ACCEL scalar Acceleration of gravity.
C_PI scalar 7T

C_DEG_TO_RAD scalar Degrees to radians.
C_RAD_TO_DEG scalar Radians to degrees.
C_MIN_TO_SEC scalar Minutes to seconds.
C_HR_T0_SEC scalar Hours to seconds.
C_SEC_T0_HR scalar Seconds to hours.
C_MIN_TO_SEC scalar Minutes to seconds.
C_SEC_TO_MIN scalar Seconds to minutes.
C_NM_T0_FT scalar Nautical miles to feet.
C_FT_T0_NM scalar Feet to nautical miles.
C_SL_SSPD scalar Sea level sound speed.
C_SL_PRESS scalar Sea level pressure.
C_ALLOW_LEG_FAIL scalar Allow a leg failure.
C_NO_ALLOW_LEG_FAIL scalar Do not allow a leg failure.
C_LF_CSC_LEG scalar Load factor for a constant speed climb leg.
C_LF_HA_LEG scalar Load factor for a horizontal acceleration leg.
C_LF_CA_LEG scalar Load factor for a climb and acceleration leg.
C_LF_T0_LEG scalar Load factor for a takeoff leg.
C_LF_CASC_LEG scalar Load factor for a constant altitude speed

cruise leg.

72

Global Data Created by Init Miss Constants - continued

Name Data Type Brief Description
C_LF_BCMBCA_LEG scalar Load factor for a best cruise mach / best

cruise altitude leg.
C_LF_LOIT_LEG scalar Load factor for a loiter leg.
C_LF_CEHM_LEG scalar Load factor for a constant energy height ma-

neuver leg.
C_OFFIDX_IFAIL scalar Index into off design data at which IFAIL is

located.
C_OFFIDX_SFC scalar Index into off design data at which SFC is

located.
C_OFFIDX_TSFC scalar Index into off design data at which TSFC is

located.
C_OFFIDX_UN_THRUST scalar Index into off design data at which uninstalled

thrust is located.
C_OFFIDX_THRUST scalar Index into off design data at which installed

thrust is located.
C_OFFIDX_INLET_LC scalar Index into off design data at which the inlet

loss coefficient is located.
C_OFFIDX_NOZZLE_LC scalar Index into off design data at which the nozzle

loss coefficient is located.
C_0FFIDX_M0DE scalar Index into off design data at which MODE is

located.
C_OFFIDX_PLA scalar Index into off design data at which PLA is

located.
C_0FFIDX_PCTRH_1 scalar Index into off design data at which PCTRH(l)

is located.
C_ZERO_MACH scalar A zero mach number.
C_NULL_RETURN scalar A null return value.
CJPASS scalar Pass.
C_FAIL scalar Fail.
E_ABORT_MISS scalar Abort mission.
E_N0_ERR0R_IN_LEG scalar No error in leg.
E_NO_WARNG_IN_LEG scalar No warning in leg.
E_BAD_SWITCH_NUM scalar Bad switch number error.
E_LIN_INT_ERROR scalar Linear interpolation error.
E_LIFT_VIOLATE scalar Lift coefficient violation.
E_INSUFF_THRUST scalar Insufficient thrust error.
E_SWITCH_CONST scalar Switch constraint error.
E_BAD_AB_0PTI0N scalar Bad afterburner option error.
E_T0_DIST scalar Takeoff distance error.
E_LEG_FAIL_CONT scalar Leg failure continutation error.
E_THROTTLE_AB scalar Afterburner throttling error.

73

Global Data Created by Init Miss Constants - continued

Name Data Type Brief Description
E_TERMAP_CRASH scalar TERMAP crash error.
E_TERMAP_INFEAS scalar TERMAP infeasible error.
E_UWEXPECTED scalar Unexpected error.
E_REQ_UNIN scalar Required uninstalled data error.
E_LOSS_FAIL scalar Installation loss model failure.

4.12 Init Kriging Data

The global data defined by this unit is given in Table 4.9.

Table 4.9: Global Data Created by Init Leg Mapping

Name Data Type Brief Description
K_USE_KRIGING scalar Reference number to use kriging.
K_NO_USE_KRIGING scalar Reference number to not use kriging.
K_G00D_ESTIMATE scalar Reference number for a good kriged estimate.
K_BAD_ESTIMATE scalar Reference number for a bad kriged estimate.
K_QUALITY_MEASURE scalar Quality measure option for kriging code.
K_KRIGING_TOL scalar Kriging tolerance to be used with quality mea-

sure.

74

